
Reactive Traversal of Recursive Data Types

Francisco Sant’Anna
Departamento de Informática

— PUC-Rio, Brazil
fsantanna@inf.puc-rio.br

Hisham Muhammad
Departamento de Informática

— PUC-Rio, Brazil
hisham@inf.puc-rio.br

Johnicholas Hines
IDEXX Laboratories

johnicholas.hines@gmail.com

ABSTRACT
We propose a structured mechanism to traverse recursive
data types incrementally, in successive reactions to external
input events. traverse is an iterator-like anonymous block
that can be invoked recursively and suspended at any point,
retaining the full state and stack frames alive. traverse is de-
signed for the synchronous language Céu, inheriting all of its
concurrency functionality and safety properties, such as par-
allel compositions with orthogonal abortion, static memory
management, and bounded reaction time and memory us-
age. We discuss three applications in the domain of control-
oriented DSLs that contain reactive and recursive behavior
at the same time.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features

General Terms
Design, Languages

Keywords
Reactive Programming, Recursive Data Types, Structured
Programming, Behavior Trees, Domain Specific Languages,
Incremental Computation, Logo

1. INTRODUCTION
The facilities a given language offers for constructing

data types have a direct impact on the nature of algorithms
that programmers will write on that language. As an exam-
ple, the aim for referential transparency in functional lan-
guages enforces data structures to be immutable. Under
these constraints, one must avoid excessive memory copying
through specialized algorithms [14].

In this paper, we discuss the design of recursive data
types and an associated control facility for a language de-
veloped under a different set of constraints. Céu [17, 18]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

1 input void RESET; // declares an external event
2 var int v = 0; // variable shared by the trails
3 par do
4 loop do // 1st trail
5 await 1s;
6 v = v + 1;
7 _printf("v = %d\n", v);
8 end
9 with

10 loop do // 2nd trail
11 await RESET;
12 v = 0;
13 end
14 end

Figure 1: Introductory example in Céu.

is an imperative, concurrent and reactive language in which
lines of execution, known as trails, react together continu-
ously and in synchronous steps to external stimuli. Céu sup-
ports mutable data, with static memory and safe pointer ma-
nipulation. However, these features are incompatible with
garbage-collected immutable data structures, as well as with
general records with arbitrary pointers such as structs in C.

The solution to this problem is twofold, with data and
control aspects. For data management, we introduce a re-
stricted form of recursive data types that can describe trees
(but not general graphs). To control reactive behavior, we
propose a structured mechanism that can traverse data types
safely and incrementally, in successive reactions to events.
After we present the design of these constructs, we discuss
three applications in the domain of control-oriented DSLs.

2. CÉU CONSTRUCTS
The introductory example1 in Figure 1 gives a general

flavor of Céu. It first defines an input event RESET (line 1),
a shared variable v (ln. 2), and starts two trails with the par

construct (ln. 3-14): the first (ln. 4-8) increments variable
v on every second and prints its value on screen; the second
(ln. 10-13) resets v on every external request to RESET.

In the synchronous model of Céu, a program reacts to
an occurring event completely before handling the next. A
reaction represents a logical instant in which all trails await-
ing the occurring event awake and execute atomically, one
after the other, until they await again or terminate. As a
consequence, all consecutive operations to shared variable v

in Figure 1 are atomic because reactions to events 1s and
RESET can never interrupt each other. If multiple trails awake

1A screencast of all examples in the paper is available at
https://vimeo.com/135297440.

to the same event, the scheduler employs lexical order, i.e.,
the trail that appears first in the source code executes first.
For this reason, programs are deterministic even in the pres-
ence of side effects in concurrent lines of execution. To avoid
infinite execution for reactions, Céu ensures that all loops
contain await statements [17].

Céu relies on a source-to-source compiler that generates
single-threaded code in C. The generated code has a negli-
gible overhead in terms of memory and CPU usage in com-
parison to handcrafted event-driven code written directly in
C [17].

2.1 Recursive Data Types
The data construct in Céu provides a safer alternative

to C’s struct, union, and enum definitions. All allocations are
made in terms of a memory pool, and instances must form
a tree structure with respect to the pool’s root element.

Figure 2 illustrates the recursive List data type, declared
as a tagged union (ln. 1–5). The first tag of a recursive type
has a special meaning and represents the union’s null tag.
In the example, the tag NIL also represents an empty list (ln.
2). The second tag, CONS (ln. 4), represents list nodes.

In the first block of the example (ln. 7–16), we declare
a pool of List objects of size 1 (ln. 8). All pools have static
memory management based on their enclosing lexical scope
(ln. 7–16). The pool variable represents the root element,
and is implicitly initialized to the null tag of its data type,
i.e., lst1 receives List.NIL (ln. 8). Then, we use the =new

construct which performs allocation and assignment at the
same time (ln. 9–12): it attempts to allocate a list of three
elements (10, 20, and 30), and assigns the result to lst1,
which is also the destination memory pool for the alloca-
tion (inferred from the l-value in the assignment). Since the
pool has size 1, only the allocation of first element succeeds,
with the failed subtree allocation returning the null tag (i.e.,
List.NIL). The print command (ln. 13–14) outputs “10, 1”:
the head of the first element, and true in the NIL check for
the second element. Finally, the end of the block (ln. 16)
deallocates the pool along with all elements inside it.

In the second block (ln. 18–24), we declare the lst2 pool
with an unbounded memory limit (i.e., List[] in line 19).
Now, all allocations succeed (ln. 20).2 Then, we mutate
the tail of the first element to point to a newly allocated
element in the same pool, which also succeeds (ln. 21). At
the moment of the mutation, the old subtree (containing
values “20” and “30”) is completely removed from memory.
The print command (ln. 22) outputs “50”, displaying the
head of the new second element. Again, the end of the block
(ln. 24) deallocates the pool along with all of its remaining
elements.

In Céu, recursive data types impose some restrictions.
Elements in different pools cannot be mixed without copy-
ing. Types may contain arbitrary weak pointers, but weak
pointers to Céu structures must be observed via the watch-

ing construct, as they can be invalidated at any time (to be
discussed in Section 2.2).

2.2 Traversing Data Types
Céu introduces the traverse structured mechanism for

traversing recursive data types incrementally. The code in

2To save space, in the next examples we omit the data type
prefix in tags (e.g., List.CONS becomes CONS).

1 data List with
2 tag NIL ();
3 or
4 tag CONS (int head, List tail);
5 end
6

7 do
8 pool List[1] lst1;
9 lst1 = new List.CONS(10,

10 List.CONS(20,
11 List.CONS(30,
12 List.NIL()));
13 _printf("%d, %d\n", lst1.CONS.head,
14 lst1.CONS.tail.NIL);
15 // prints 10, 1
16 end
17

18 do
19 pool List[] lst2;
20 lst2 = new CONS(10, CONS(20, CONS(30, NIL()));
21 lst2.CONS.tail = new CONS(50, NIL());
22 _printf("%d\n", lst2.CONS.tail.CONS.head);
23 // prints 50 (20 and 30 have been freed)
24 end

Figure 2: A recursive List data type definition (ln.
1–5) with uses (ln. 7–16 and 18–24).

1 pool List[3] lst = <...>; // [10, 20, 30]
2

3 var int sum =
4 traverse e in lst do
5 if e:NIL then
6 escape 0;
7 else
8 var int sum_tail = traverse e:CONS.tail;
9 escape sum_tail + e:CONS.head;

10 end
11 end;
12

13 _printf("sum = %d\n", sum); // prints 60

Figure 3: Calculating the sum of a list.

Figure 3 creates a list (ln. 1) and traverses it to calculate
the sum of elements (ln. 3–11). The traverse block (ln. 4–
11) starts with the element e pointing to the root of the list
lst. The escape statements (ln. 6,9) return a value to the
enclosing assignment to sum (ln. 3). The sum of a NIL list is
0 (ln. 5–6).3 A CONS list needs to calculate the sum of its tail
recursively, invoking traverse again (ln. 8), which creates a
nested instance of the enclosing traverse block (ln. 4–11),
now with e pointing to e:CONS.tail. Only after the recursive
traversal of its subtree terminates the CONS clause adds its
head and returns the sum (ln. 9).

When used without event-based control mechanisms, as
in Figure 3, a traverse block is equivalent to an anony-
mous closure called recursively. However, traverse complies
with the event system and memory management discipline of
Céu. In fact, it is an abstraction defined in terms of a more
fundamental concept, organisms [18], which are objects with
concurrent trails of execution (akin to Simula [3]). Figure 4
depicts the expansion of the traverse construct along with
a non-trivial example.

The example in CODE-1 of Figure 4 (C1©) extends the
body of the previous example in Figure 3 with reactive be-
havior. Now, for each recursive iteration, we print the cur-
rent head and await 1 second before traversing the tail (ln.
10-12). Note that while nested iterations of traverse await

3The operator ‘:’, as in e:NIL, is equivalent to C’s ‘->’.

1 pool List[3] lst = <...>; // [10, 20, 30]
2

3 par do
4 var int sum =
5 traverse e in lst do
6 if e:NIL then
7 escape 0;
8 else
9 watching e do

10 _printf("me = %d\n", e:CONS.head);
11 await 1s;
12 var int sum_tail = traverse e:CONS.tail;
13 escape sum_tail + e:CONS.head;
14 end
15 escape 0;
16 end
17 end;
18 _printf("sum = %d\n", sum);
19 // prints 60 (with no mutations)
20 with
21 <...>
22 lst.CONS.tail = NIL();
23 // possible concurrent mutation
24 <...>
25 end
26

27

28

29

30

31

32

33

34

35

36

37

38

39

40 .

C1© CODE-1: Original code (with traverse)

1 pool List[3] lst = <...>; // [10, 20, 30]
2

3 par do
4 class Frame (Frame[3]& frames,
5 _Dummy∗ parent,
6 List[3]∗ e)
7 do
8 watching ∗this.parent do
9 if e:NIL then

10 escape 0;
11 else
12 watching e do
13 _printf("me = %d\n", e:CONS.head);
14 await 1s;
15 do
16 var _Dummy scope;
17 var Frame∗ frame = spawn Frame(this.frames,
18 &scope, e:CONS.tail)
19 in this.frames;
20 var int sum_tail = await ∗frame;
21 end
22 escape sum_tail + e:CONS.head;
23 end
24 escape 0;
25 end
26 end
27 escape 0;
28 end
29 pool Frame[3] frames;
30 var _Dummy scope;
31 var Frame∗ frame = spawn Frame(frames, &scope, lst)
32 in frames;
33 var int sum = await ∗frame;
34 _printf("sum = %d\n", sum); // prints 60
35 with
36 <...>
37 lst.CONS.tail = NIL();
38 // possible concurrent mutation
39 <...>
40 end

C2© CODE-2: Expanded code (without traverse)

Figure 4: Calculating the sum of a list, one element each second. The traverse construct is a syntactic sugar
that can be “desugared” with explicit organisms.

1 second, all previous iterations are blocked, retaining their
full state of execution. Note also that a parallel trail (ln. 21–
24) remains reactive in the meantime, and can mutate the
list at any time. We handle the issue of parallel mutations
using the watching construct. The watching block aborts
if the object being watched is released from memory [18].
Using watching e (ln. 9–14) we ensure that if element e is
released from memory during await (ln. 11) due to a muta-
tion in the list (ln. 22), we simply ignore the whole subtree
and return 0 (ln. 15). Céu enforces at compile time that
all accesses to pointers that cross await statements are pro-
tected with an enclosing watching block. This ensures that
if concurrent side effects affect the pointed object, no code
uses the stale pointer, because the whole block is aborted.

CODE-2 in Figure 4 (C2©) is the equivalent expansion
of C1© without the traverse construct. Because it contains
concurrency constructs (i.e., await and watching), the body
of the traverse (C1©: 6–16) is abstracted in an organism of
the Frame class (C2©: 4–26), which is analogous to “stack
frames” for subroutines in standard programming languages.
In Céu, organisms also reside in lexically-scoped memory
pools [18], hence, the pool of frames (C2©: 29) is analogous to
a runtime “call stack”. We limit the number of stack frames
to match the exact maximum number of elements to traverse
(C1©: 1 and C2©: 4, 29). To “call” the first traverse iteration,

we dynamically spawn a Frame instance into the frames pool
(C2©: 31–32), which runs implicitly in parallel with the rest
of the application (e.g., C2©: 36–39). Then, we immediately
await the termination of this frame (C2©: 33). Only after the
whole traversal finishes that we acquire the sum and print it
(C2©: 33–34).

A Frame receives three arguments in the constructor (C2©:
4–6): a reference to a pool (to recursively spawn new frames);
a pointer to its parent scope (to handle abortion); and a
pointer to the subtree of the data type (to be able to manip-
ulate it). The Frame constructor for the first call (C2©: 31–32)
receives the static pool of frames, a dummy scope organism
attached to the current scope, and the original tree to tra-
verse (C1©: 5). The Frame constructor for recursive calls (C2©:
17–19) receives the same pool of frames, another dummy
scope as parent, and the subtree for the recursive invocation
(C1©: 12). The Frame body (C2©: 8–27) watches the dummy or-
ganism attached to its parent scope and aborts if the parent
terminates. Watching an object in the parent scope guar-
antees that the hierarchy in the call stack is preserved, i.e.,
that there are no orphan frames executing. The remaining
code is almost the same in the original traverse body and in
the Frame body (C1©: 6–16 and C2©: 9–25), with the exception
of the recursive invocation explained above (C2©: 16–19).

As the expansion illustrates, three aspects make traverse

fundamentally different from recursive function calls:
1. Each traverse invocation spawns a new organism for

the frame which executes concurrently with other parts
of the application. Also, each frame itself can execute
arbitrary code in Céu with nested concurrent trails (to
be illustrated in Section 3).

2. A traverse is attached to a lexically-scoped memory
pool for a specific data structure. Therefore, we can
infer at compile time the maximum traversal depth
if the data is bounded (e.g., List[3] lst). Enforcing
bounded limits is an important requirement for con-
strained and real-time embedded systems, which is the
original application domain of Céu [17]. In addition,
when a recursive data structured goes out of scope,
all associated stack frames are automatically aborted,
given that the pool of frames expands to a narrower
lexical scope (e.g., C2©: 1 vs. 29) [18].

3. The execution body of a traverse block is implicitly
wrapped by a concurrency construct that watches for
mutations of the current node. In practice, this means
that it reacts consistently if another trail of execution
modifies the data structure being traversed (e.g., C1©:
22).

We believe that the traverse construct, more than a sim-
ple convenience, reduces the complexity of programs con-
siderably, handling hierarchy of behaviors associated with
recursive data types automatically.

3. APPLICATIONS
In this section, we present three applications that explore

the reactive nature of the traverse construct. We start with
Behavior Trees used in video games for AI modeling. Then,
we show a Logo Turtle that can execute commands in par-
allel. Finally, we extend the Turtle example with a dynamic
and concurrent queue of commands that can affect the run-
ning program.

3.1 Behavior Trees
Behavior Trees are a family of DSLs used for game AI [10,

7]. The DSLs vary between languages, but they usually
include sequence (SEQ) and selection (SEL) combinators to
model concurrent creature behavior. The SEQ can be un-
derstood as short-circuit evaluation of an ‘and’, while the
SEL corresponds to an ‘or’. This skeleton is extensible with
leaves to test and set properties, perform animations and
sounds, etc., and is an effective alternative to finite state
machines for authoring game AI.

However, because the evaluation of trees extends across
multiple game frames, specifying node behaviors in generic
languages via event-driven programming becomes a chal-
lenge due to “stack ripping” [11]. By lowering the barrier
to writing custom nodes and leaves, Céu lightweight event
control mechanisms make behavior trees more usable.

Figure 5 describes a generic grammar for behavior trees
(ln. 1–9). The SEQ and SEL tags (ln. 4,6) are recursive and
behave as described above. The LEAF tag (ln. 8) receives
a reference to an opaque Leaf data type, which is defined
externally and is specific to the application domain. The
interpreter for behavior trees is abstracted in a class defi-
nition (ln. 11–35) and receives the tree to traverse as the
single argument (ln. 11). The body acquires the return
status of the traversal (ln. 12) and returns it as the final
result (ln. 34). For the SEQ tag (ln. 14–20), we traverse the

1 data BTree with
2 tag NIL ();
3 or
4 tag SEQ (BTree first, BTree second);
5 or
6 tag SEL (BTree first, BTree second);
7 or
8 tag LEAF (Leaf& leaf);
9 end

10

11 class BTreeInterpreter (BTree[]& btree) do
12 var int ret =
13 traverse t in btree do
14 if t:SEQ then
15 var int ok = traverse t:SEQ.first;
16 if ok == 0 then
17 escape ok;
18 end
19 ok = traverse t:SEQ.second;
20 escape ok;
21 else/if t:SEL then
22 var int ok = traverse t:SEL.first;
23 if ok != 0 then
24 escape ok;
25 end
26 ok = traverse t:SEL.second;
27 escape ok;
28 else/if t:LEAF then
29 var int ret =
30 do LeafHandler(t:LEAF.leaf);
31 escape ret;
32 end
33 end;
34 escape ret;
35 end

Figure 5: A simple grammar of behavior trees with
SEQ and SEL nodes and a straightforward interpreter.

first subtree (ln. 15) and only if it succeeds, we traverse
the second subtree (ln. 19). For the SEL tag (ln. 21–27), we
traverse the first subtree (ln. 22) and only if it fails, we
traverse the second subtree (ln. 26). Finally, the LEAF tag
(ln. 28–31) delegates the behavior to another class, which
does real work and is domain specific. The do Class syntax
(ln. 29–30) creates an anonymous and lexically scoped or-
ganism and awaits its termination to return the final status
(ln. 31). The organism itself can contain any valid code in
Céu (including parallel compositions) and executes for an
arbitrary amount of time [18].

1 pool BTree[] btree =
2 new SEQ(SEQ,
3 SEL(
4 LEAF(SENSE_ON_TABLE(C)),
5 LEAF(MOVE_BLOCK_TO_TABLE(C))),
6 LEAF(MOVE_BLOCK_TO_BLOCK(B, A)),
7 LEAF(MOVE_BLOCK_TO_BLOCK(C, B)));

Figure 6: A blocks world behavior tree.

As an example of a domain, the blocks world is a clas-
sical planning domain in AI [19]. The tree in Figure 6 is
based on the output from a Contingent-FF benchmark that
extends the blocks domain with sensor actions [8]. We want
to achieve an ABC stack and assume two decision possibili-

ties, as illustrated in the figure. We use a SEL node (ln. 3)
with a sensor leaf (ln. 4) to decide which strategy is appro-
priate: If C is not sensed on top of the table, we first move
it to the table (ln. 5). Then, in both situations, we stack
B on top of A, and C on top of B (ln. 6–7). The example
illustrates how the behavior tree can exhibit goal-directed
behavior specified directly by domain designers.

3.2 Logo Turtle
Our second example is an interpreter for a simple variant

of the classic Logo turtle-graphics interpreter [15]. The aim
of this example is to demonstrate parallel traversal: we can
instruct the turtle to move and rotate at the same time to
trace curves.

Figure 7 presents the Command data type (ln. 1–15), which
specifies the abstract syntax of our Logo variant. As in tra-
ditional Logo, commands can execute in sequence through
the SEQ tag (ln. 4), and can also repeat a number of times
through the REPEAT tag (ln. 6). We extend the MOVE and
ROTATE commands to take as arguments the speed at which
they should affect the turtle (ln. 8,10). For example, a Com-

mand.MOVE(300) node directs the turtle to move at the speed
of 300 pixels per second, indefinitely. Therefore, the only
way to make the turtle stop moving or rotating is through
two Céu-like extensions: The AWAIT tag (ln. 12) simply
awaits a given number of milliseconds. The PAROR tag (ln.
14) launches two commands in parallel, and aborts both as
soon as one of them terminates. As an example, the program
in lines 54–56 makes the turtle to move along a semicircle.

The interpreter for the commands is also abstracted in
a class definition (ln. 17–51). It holds as attributes a ref-
erence to a Turtle object (which implements the UI) and a
reference to the commands (ln. 17–18). The execution body
of the class uses the traverse construct to interpret the com-
mands (ln. 20–50). The SEQ tag (ln. 22–24) traverses each
of its subcommands in sequence (in contrast with BTreeIn-

terpreter, it does not handle failures). The REPEAT tag (ln.
26–29) traverses its subcommand the specified number of
times. The MOVE and ROTATE tags (ln. 31–37) rely on pre-
defined classes of organisms to update the position and ori-
entation of the received turtle. The AWAIT tag (ln. 39–40)
simply causes the current iteration of the traverse to await
the given amount of time. Finally, the PAROR tag (ln. 42–47)
uses the par/or construct to traverse both subcommands at
the same time: as soon as one of the subtrees terminates its
execution, the other one is safely aborted [17].

Note that the entire interpreter block is surrounded by a
watching construct (ln. 22). As discussed in Section 2.2, the
Céu compiler enforces the presence of the guard, due to the
use of the cmd pointer in code that spans multiple reactions.
This ensures clean abortion in case the AST is mutated by
code running in other trails.

3.3 Enqueuing Commands
All examples so far create a fixed tree that does not vary

during traversal. Figure 8 extends the Turtle application
with a queue of pending commands to execute.

We define a new Queue data type in CODE-3 : The ROOT

tag (ln. 4–6) has a running subtree of commands, a wait-

ing queue of pending commands, and a tmp node to allow
in-place manipulation of the tree (to be discussed further).
The ITEM tag (ln. 8–9) represents a queue item and contains
a cmds subtree with the actual commands to execute (as de-

1 data Command with
2 tag NOTHING ();
3 or
4 tag SEQ (Command first, Command second);
5 or
6 tag REPEAT (int times, Command command);
7 or
8 tag MOVE (int pixels);
9 or

10 tag ROTATE (int angle);
11 or
12 tag AWAIT (int ms);
13 or
14 tag PAROR (Command first, Command second);
15 end
16

17 class CommandInterpreter (Turtle& turtle,
18 Command[]& cmds)
19 do
20 traverse cmd in cmds do
21 watching cmd do
22 if cmd:SEQ then
23 traverse cmd:SEQ.first;
24 traverse cmd:SEQ.second;
25

26 else/if cmd:REPEAT then
27 loop i in cmd:REPEAT.times do
28 traverse cmd:REPEAT.command;
29 end
30

31 else/if cmd:MOVE then
32 do TurtleMove(turtle,
33 cmd:MOVE.pixels);
34

35 else/if cmd:ROTATE then
36 do TurtleRotate(turtle,
37 cmd:ROTATE.angle);
38

39 else/if cmd:AWAIT then
40 await (cmd:AWAIT.ms) ms;
41

42 else/if cmd:PAROR then
43 par/or do
44 traverse cmd:PAROR.first;
45 with
46 traverse cmd:PAROR.second;
47 end
48 end
49 end
50 end
51 end
52

53 pool Command[] cmds =
54 new PAROR(
55 AWAIT(1000),
56 PAROR(MOVE(300), ROTATE(180)));
57

58 var Turtle turtle;
59 do CommandInterpreter(turtle, cmds);

Figure 7: Grammar, interpreter, and sample pro-
gram for a Logo Turtle DSL.

scribed in Figure 7: 1–15), and a prv queue item pointing to
an older item (i.e., the queue is in reverse order to facilitate
insertion). As Figure 9 illustrates in box 0, a queue instance
has a single ROOT node with linked lists of ITEM nodes in
the running and waiting fields. Except when creating a new
command, the tmp field is always NIL.

We define the queue traversal in CODE-4. The ROOT

traversal (ln. 3–14) is a continuous loop that executes the
running subtree and swaps it with the waiting queue on ter-
mination. The par/and (ln. 5–9) ensures that that the swap
only occurs after the current running commands terminate
(ln. 6) and something (in parallel) mutates the waiting sub-
tree (ln. 8), meaning that the queue is no longer empty. The
swapping process (ln. 10–13) is illustrated in Figure 9:

data Queue with
tag NIL ();

or
tag ROOT (Queue running,

Queue waiting,
Queue tmp);

or
tag ITEM (Command cmds,

Queue prv);
end

.

CODE-3: Queue type

1 traverse qu in queue do
2 watching qu do
3 if qu:ROOT then
4 loop do
5 par/and do
6 traverse qu:ROOT.running;
7 with
8 await qu:ROOT.waiting;
9 end

10 qu:ROOT.running =
11 qu:ROOT.waiting;
12 qu:ROOT.waiting =
13 new ITEM(NOTHING(), NIL());
14 end
15 else/if qu:ITEM then
16 traverse qu:ITEM.prv;
17 do CommandInterpreter(
18 turtle, qu:ITEM.cmds);
19 end
20 end
21 end

CODE-4: Queue traversal

1 input (char∗,int,int) ENQUEUE;
2 every (cmd,vel,time) in ENQUEUE do
3 if _strcmp(cmd,"move")==0 then
4 queue.ROOT.tmp =
5 new ITEM(
6 NOTHING(),
7 ITEM(
8 PAROR(
9 MOVE(vel),

10 AWAIT(time)),
11 NIL()));
12 else/if _strcmp(cmd,"rotate")==0 then
13 <...> // analogous to the MOVE above
14 end
15 queue.ROOT.tmp.ITEM.prv.ITEM.prv =
16 queue.ROOT.waiting.ITEM.prv;
17 queue.ROOT.waiting = queue.ROOT.tmp;
18 end
19

20

21 .

CODE-5: Enqueuing commands

Figure 8: Queue extension for the Turtle DSL of Figure 7.

Figure 9: Swapping waiting and running commands.

• The initial state (box 0) assumes pre-existing running

and waiting items.
• Lines 10–11 assign the waiting subtree (marked B©) to

the running field, releasing the old subtree A©. Recur-
sive data types in Céu have move semantics, hence,

the waiting field is automatically set to the union null
type (i.e., Queue.NIL).

• Lines 12–13 assign a new neutral ITEM with a dummy
command NOTHING (box 1: C©) to the waiting field, com-
pleting the swapping operation.

After the swapping process, the loop restarts and traverses
the new running commands (ln. 4). The ITEM traversal (ln.
15–18) is straightforward: first we traverse the previous item
(ln. 16), and then we reuse the CommandInterpreter class of
Figure 7 to traverse the commands (ln. 17–18).

Even though this example mutates the running field only
after its traversal terminates (ln. 10–11), it is safe to do an
arbitrary mutation at any time. Note that the compiler en-
forces the use of watching (ln. 2) which encloses the running
turtle interpreter (ln. 17–18). Hence, if its enclosing ITEM

(ln. 15) is mutated, the watching will awake and abort the
interpreter running inside the lexical scope.

The enqueuing of new commands is depicted in CODE-
5. The external input event ENQUEUE (ln. 1) accepts “move”
and “rotate” strings with an associated velocity and time
(i.e., “char*,int,int” arguments). The every loop (ln. 2–18)
reacts to each occurrence of ENQUEUE, creating and enqueuing
the requested command, as illustrated in Figure 10:
• The initial state (box 0) assumes a pre-existing neutral

ITEM in the root of the waiting field D©.
• Lines 4–11 assign a new subtree to the tmp field (box 1)

with a new neutral ITEM (E©, l. 5–6) linked to the set
of commands to MOVE the turtle (F©, l. 7–11).

Figure 10: Enqueuing new commands.

• Lines 15–16 move the already waiting commands (G©)
to the tail of tmp, in the place of NIL (H©). The old
location is automatically set to NIL. Note that we skip
the neutral ITEM nodes of both waiting and tmp fields.
This prevents the waiting root from becoming NIL and
awaking the ROOT node (CODE-4 : 8) before we finish
the enqueuing operation.

• Line 17 moves the tmp subtree (E©) back to the waiting

field, releasing the abandoned neutral ITEM (D©), and
notifying the ROOT node that the queue is no longer
empty. The tmp field is automatically set to NIL. Note
that the new waiting subtree preserves the neutral ITEM
E© for subsequent enqueuing operations.

4. RELATED WORK
Traversing data reactively in an imperative language re-

quires dealing with concurrent updates. Some attempts
make this process more transparent, but performance con-
cerns ultimately require the programmer to specify behav-
ior explicitly. One-way dataflow constraints were used to
track updates in data structures in a reactive imperative
language [4]. In it, classes are annotated with constraint
handler functions which are recursively called on value up-
dates. Another approach focuses on incremental computa-
tion and uses a combination of dynamic dependency graphs
and memoization [1]. Keeping track of dependencies in-
curs significant overhead: traceable data types [2] mitigates
this issue, letting the programmer control the granularity of
tracked data. In Céu, tracking pointer updates is explicit
(and enforced), and the move semantics for recursive data
fields propagates changes to tracked pointers automatically.

More universal approaches such as generators first ap-
peared in CLU [12], but with a stackless implementation
that did not support recursion. Icon [5] allows yielding
through recursive functions, but delegation is explicit via
the suspend keyword. Python originally introduced CLU-
like stackless generators in version 2.2, but those were later
internally promoted to coroutines in order to support recur-
sion. Finally, in version 3.3, a form of delegation was intro-
duced [16]. Lua [9] has first-class stackful coroutines: gener-
ator functions have to be constructed by wrapping coroutine
objects, but explicit delegation in recursive calls is not re-
quired. More recently, extensions to support asynchronous
concurrent updates during traversal have been proposed for
Dart [13] and Scala [6]. Like our work, the Scala extension
is translated into the language’s core concurrency model.
Céu builds its higher-level traverse construct on top of or-
ganisms, which also provides cooperative multitasking, but
with transparent support for recursion and concurrency. Or-
ganisms allow composing parallel traversals more naturally
in comparison to coroutines, which requires a specialized
scheduler and does not impose safety guarantees.

5. CONCLUSION
We presented a new construct for traversing recursive

data types incrementally in the context of Céu, an im-
perative reactive language with synchronous concurrency.
Combining concurrency and safety while traversing recur-
sive data structures is not straightforward, especially with
support for mutation.

The traverse construct encapsulates an idiom that han-
dles each recursive step in a separate organism (Céu’s ab-

straction mechanism), allowing concurrent traversal while
preserving the language’s safety properties. A traverse block
is tied with its associated data structure, ensuring bounded
execution time. By dealing with concurrency in a primi-
tive control mechanism, we make reactive traversal as easy
to perform correctly as a recursive function call. We im-
pose some restrictions on the data structures that can be
represented. The requirement of tree hierarchies with move
semantics demands care when designing algorithms that ma-
nipulate them. In trade, these restrictions enable static
memory management with deterministic deallocation. Still,
we do not feel that the restrictions are prohibitively limit-
ing. For instance, persistent data structures in functional
languages operate under similar constraints.

6. REFERENCES
[1] U. A. Acar et al. An experimental analysis of

self-adjusting computation. ACM Trans. Program.
Lang. Syst., 32(1):3:1–3:53, Nov. 2009.

[2] U. A. Acar et al. Traceable data types for
self-adjusting computation. In Proceedings of PLDI
’10, PLDI ’10, pages 483–496. ACM, 2010.

[3] O.-J. Dahl and K. Nygaard. SIMULA: an
ALGOL-based simulation language. Communications
of the ACM, 9(9):671–678, 1966.

[4] C. Demetrescu et al. Reactive imperative
programming with dataflow constraints. ACM Trans.
Program. Lang. Syst., 37(1):3:1–3:53, Nov. 2014.

[5] R. E. Griswold, D. R. Hanson, and J. T. Korb.
Generators in Icon. ACM Trans. Program. Lang.
Syst., 3(2):144–161, Apr. 1981.

[6] P. Haller and H. Miller. RAY: Integrating Rx and
Async for direct-style reactive streams. In Proceedings
of REM ’13, Oct. 2013.

[7] C. Hecker. My liner notes for Spore. http:
//chrishecker.com/My_liner_notes_for_spore,
2009. Accessed: 2015-07-30.

[8] J. Hoffmann and R. Brafman. Contingent planning via
heuristic forward search with implicit belief states. In
Proc. ICAPS, volume 2005, 2005.

[9] R. Ierusalimschy. Programming in Lua, Third Edition.
Lua.Org, 3rd edition, 2013.

[10] D. Isla. Handling complexity in the Halo 2 AI. In
Game Developers Conference, 2005.

[11] M. N. Krohn et al. Events can make sense. In USENIX
Annual Technical Conference, pages 87–100, 2007.

[12] B. Liskov. A history of CLU. SIGPLAN Not.,
28(3):133–147, Mar. 1993.

[13] E. Meijer, K. Millikin, and G. Bracha. Spicing up dart
with side effects. Queue, 13(3):40:40–40:59, Mar. 2015.

[14] C. Okasaki. Purely Functional Data Structures.
Cambridge University Press, 1998.

[15] S. Papert. Mindstorms: Children, Computers, and
Powerful Ideas. Basic Books, Inc., 1980.

[16] Python Software Foundation. (PEPs) 255, 342, and
380. https://www.python.org/dev/peps/. Accessed:
2015-08-03.

[17] F. Sant’Anna et al. Safe system-level concurrency on
resource-constrained nodes. In SenSys’13. ACM, 2013.

[18] F. Sant’Anna et al. Structured synchronous reactive
programming with Céu. In Modularity’15, 2015.

[19] J. Slaney and S. Thiébaux. Blocks world revisited.
Artif. Intell., 125(1-2):119–153, Jan. 2001.

