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Abstract
Despite the continuous research in facilitating program-

ming WSNs, most safety analysis and mitigation efforts in
concurrency are still left to developers, who must manage
synchronization and shared memory explicitly. In this paper,
we present a system language that ensures safe concurrency
by handling threats at compile time, rather than at runtime.
The synchronous and static foundation of our design allows
for a simple reasoning about concurrency enabling compile-
time analysis to ensure deterministic and memory-safe pro-
grams. As a trade-off, our design imposes limitations on
the language expressiveness, such as doing computationally-
intensive operations and meeting hard real-time responsive-
ness. We implement widespread network protocols and the
CC2420 radio driver to show that the achieved expressive-
ness and responsiveness is sufficient for a wide range of
WSN applications. The implementations show a reduction
around 25% in code complexity, with a penalty of mem-
ory increase below 10% in comparison to nesC. Overall, we
ensure safety properties for programs relying on high-level
control abstractions that also lead to concise and readable
code.

1 Introduction
System-level development for WSNs commonly fol-

lows three major programming models: event-driven, multi-
threaded, and synchronous models. In event-driven pro-
gramming [19, 11], each external event can be associated
with a short-lived function callback to handle a reaction to
the environment. This model is efficient, but is known to be
difficult to program [1, 12]. Multi-threaded systems emerged
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as an alternative, providing traditional structured program-
ming for WSNs [12, 7]. However, the development pro-
cess still requires manual synchronization and bookkeeping
of threads [24]. Synchronous languages [2] have also been
adapted to WSNs and offer higher-level compositions of ac-
tivities, considerably reducing programming efforts [21, 22].

Despite the increase in development productivity, WSN
system languages still fail to ensure static safety properties
for concurrent programs. However, given the difficulty in
debugging WSN applications, it is paramount to push as
many safety guarantees to compile time as possible [25]. As
an example, shared memory is widely used as a low-level
communication mechanism, but current languages do not
go beyond runtime atomic access guarantees, either through
synchronization primitives [7, 27], or by adopting coopera-
tive scheduling [21, 17]. Requiring explicit synchronization
primitives lead to potential safety hazards [24]. Enforcing
cooperative scheduling is no less questionable, as it assumes
that all accesses are dangerous. The bottom line is that exist-
ing languages cannot detect and enforce atomicity only when
they are required.

In this work, we present the design of CÉU1, a syn-
chronous system-level programming language that provides
a reliable yet powerful set of abstractions for the develop-
ment of control-intensive WSN applications. CÉU is based
on a small set of control primitives similar to Esterel’s, lead-
ing to implementations that more closely reflect program
specifications [8]. In addition, CÉU provides a disciplined
policy for typical system-level functionality, such as low-
level access to C and shared memory concurrency. It also
introduces the following new safety mechanisms: first-class
timers to ensure that timers in parallel remain synchronized
(not depending on internal reaction timings); finalization
blocks for local pointers going out of scope; and stack-based
communication that avoids cyclic dependencies. We propose
a static analysis that considers all language mechanisms and
detects safety threats at compile time, such as concurrent
accesses to shared memory, and concurrent termination of
timers and threads. Our work focus on concurrency safety,

1Céu is the Portuguese word for sky.



/* nesC */
event void Boot.booted () {
call T1.startOneShot(0)
call T2.startOneShot(60000)

}
event void T1.fired () {
static int on = 0;
if (on) {
call Leds.led0Off();
call T1.startOneShot(1000);

} else {
call Leds.led0On();
call T1.startOneShot(2000);

}
on = !on

}
event void T2.fired() {
call T1.cancel();
call Leds.led0Off();
<...> // CONTINUE

}

/* Protothreads */
int main () {
PT INIT(&blink);
timer set(&timeout, 60000);
while (
PT SCHEDULE(blink()) &&
!timer expired(timeout)

);
leds off(LEDS RED);
<...> // CONTINUE

}
PT THREAD blink () {
while (1) {
leds on(LEDS RED);
timer set(&timer, 2000);
PT WAIT UNTIL(expired(&timer));
leds off(LEDS RED);
timer set(&timer, 1000);
PT WAIT UNTIL(expired(&timer));

}
}

/* CÉU */
par/or do

loop do
Leds led0On();
await 2s;
Leds led0Off();
await 1s;

end
with

await 1min;
end
Leds led0Off();
<...> // CONTINUE

Figure 1. “Blinking LED” in nesC [17], Protothreads [12], and CÉU. The colors associate chunks of code with respective
actions in the diagram.

rather than type safety [9].2
In order to enable the static analysis, CÉU programs must

undergo some limitations. Computations that run in un-
bounded time (e.g., compression, image processing) cannot
be elegantly implemented [29], and dynamic support, such
as dynamic loading is forbidden. However, we show that
CÉU is sufficiently expressive for the context of WSN ap-
plications. We successfully implemented the CC2420 radio
driver, and the DRIP, SRP, and CTP network protocols [32]
in CÉU. The implementations reduced code complexity by
25%, with an increase in ROM and RAM below 10% in com-
parison to nesC [17].

The rest of the paper is organized as follows: Section 2
gives an overview on how different programming models
used in WSNs can express typical control patterns. Sec-
tion 3 details the design of CÉU, motivating and discussing
the safety aspects of each relevant language feature. Sec-
tion 4, evaluates the implementation of the network protocols
in CÉU and compares some aspects with nesC (e.g. memory
usage and tokens count). We also evaluate the responsive-
ness of the radio driver written in CÉU. Section 5 discusses
related work to CÉU. Section 6 concludes the paper and
makes final remarks.
2 Overview of Programming Models

WSN applications must handle a multitude of concurrent
events, such as timers and packet transmissions. Although
they may seem random and unrelated for an external ob-
server, a program must logically keep track of them accord-
ing to its control specification. From a control perspective,
programs are composed of two main patterns: sequential,
i.e., an activity with two or more states in sequence; and
parallel, i.e., unrelated activities that eventually need to syn-
chronize. As an example, an application that alternates be-

2We consider both safety aspects to be complimentary and orthogonal,
i.e., type-safety techniques could also be applied to CÉU.

tween sampling a sensor and broadcasting its readings has a
sequential pattern (with an enclosing loop); while including
an 1-minute timeout to interrupt an activity denotes a parallel
pattern.

Figure 1 presents the three different programming mod-
els commonly used in WSNs. It shows the implementations
in nesC, Protothreads, and CÉU for an application that con-
tinuously lights on a LED for 2 seconds and off for 1 sec-
ond. After 1 minute of activity, the application turns off the
LED and proceeds to another activity (marked in the code as
<...>). The diagram on the right of Figure 1 describes the
overall control behavior for the application. The sequential
programming pattern is represented by the LED alternating
between the two states, while the parallel pattern is repre-
sented by the 1-minute timeout.

The first implementation in nesC, which represents
the event-driven model, spawns two timers at boot time
(Boot.booted): one to make the LED blink and another to wait
for 1 minute. The callback T1.fired continuously toggles
the LED and resets the timer according to the state variable
on. The callback T2.fired executes only once, canceling the
blinking timer, and proceeds to <...>. Overall, we argue that
this implementation has little structure: the blinking loop is
not explicit, but instead, relies on a static state variable and
multiple invocations of the same callback. Furthermore, the
timeout handler (T2.fired) requires specific knowledge about
how to stop the blinking activity manually (T1.cancel()).

The second implementation in Protothreads, which rep-
resents the multi-threaded model [12, 7], uses a dedicated
thread to make the LED blink in a loop. This brings more
structure to the solution. The main thread also helps a reader
to identify the overall sequence of the program, which is not
easily identifiable in the event-driven implementation with-
out tracking the dependencies among callbacks. However, it
still requires much bookkeeping for initializing, scheduling



and rejoining the blinking thread after the timeout (inside the
while condition).

The third implementation, in CÉU, which represents the
synchronous model, uses a par/or construct to run the two
activities in parallel: an endless loop to blink the LED, and a
single statement that waits for 1 minute before terminating.
The par/or stands for parallel-or and rejoins automatically
when any of its trails terminates (CÉU also supports par/and

compositions, which rejoin when all spawned trails termi-
nate.). We argue that the hierarchical structure of CÉU more
closely reflects the control diagram and ties the two activities
together, implying that (a) they can only exist together; (b)
they always start together (c) they always terminate together.
Besides the arguably cleaner syntax, the additional control-
flow information that can be inferred from the program is
the base for all features and safety guarantees introduced by
CÉU.

3 The Design of Céu
CÉU is a concurrent language in which multiple lines

of execution—known as trails—continuously react to input
events from the environment. Waiting for an event halts the
running trail until that event occurs. The environment broad-
casts an occurring event to all active trails, which share a sin-
gle global time reference (the event itself). The fundamental
distinction between CÉU and prevailing multi-threaded de-
signs is the way threads are combined in programs. CÉU pro-
vides Esterel-like syntactic hierarchical compositions, while
most multi-threaded systems typically only support top-level
definitions for threads. CÉU distinguishes itself from Esterel
by its tight integration with C and support for shared mem-
ory, which also demands an effective safety analysis perme-
ating (and affecting) all language features.

As an introductory example, the code in Figure 2 is
extracted from our implementation of the CC2420 radio
driver [32] and uses a par/or to control the start/stop behav-
ior of the radio. The input events CC2420 START and CC2420 STOP

(line 1) represent the external interface of the driver with a
client application (e.g. a protocol). The driver enters the
top-level loop and awaits the starting event (line 3); upon re-
quest, the driver spawns two other trails: one to await the
stopping event (line 5), and another to actually receive radio
messages in a loop (collapsed in line 9). As compositions can
be nested, the receiving loop can be as complex as needed
and contain other loops and parallel constructs. However,
once the client requests to stop the driver, the trail in line 5
awakes and terminates, making the par/or to also terminate
and kill the receiving loop, proceeding to the statement in
sequence. In this case, the top-level loop restarts, waiting for
the next request to start.

The par/or construct is regarded as an orthogonal pre-
emption primitive [5] because the two sides in the compo-
sition need not to be tweaked with synchronization primi-
tives or state variables in order to affect each other. It is
known that traditional multi-threaded languages cannot ex-
press thread termination safely [5, 28], thus being incompat-
ible with a par/or construct.

1 input void CC2420_START, CC2420_STOP;
2 loop do
3 await CC2420_START;
4 par/or do
5 await CC2420_STOP;
6 with
7 // loop with other nested trails
8 // to receive radio packets
9 <...>

10 end
11 end

Figure 2. Start/stop behavior for the radio driver.
The occurrence of CC2420 STOP (line 5) seamlessly kills the receiv-
ing loop (collapsed in line 9) and resets the driver to wait for the next
CC2420 START (line 3).

3.1 Deterministic and Bounded Execution
CÉU is grounded on a precise definition of time as a

discrete sequence of external input events: a sequence be-
cause only a single input event is handled at a time; dis-
crete because reactions to events are guaranteed to execute
in bounded time (to be discussed further). The execution
model for a CÉU program is as follows:

1. The program initiates the “boot reaction” in a single
trail.

2. Active trails execute until they await or terminate. This
step is named a reaction chain, and always runs in
bounded time.

3. The program goes idle and the environment takes con-
trol.

4. On the occurrence of a new external input event, the en-
vironment awakes all trails awaiting that event. It then
goes to step 2.

The synchronous model is based on the hypothesis that
internal reactions run infinitely faster than the rate of events
from the environment [29]. Conceptually, a program takes
no time on step 2 and is always idle on step 3. In practice,
if a new external input event occurs while a reaction chain is
running (step 2), it is enqueued to run in the next reaction.
When multiple trails are active at a time (i.e. awaking from
the same event), CÉU schedules them in the order they ap-
pear in the program text. This policy is somewhat arbitrary,
but provides a priority scheme for trails, and also ensures a
deterministic and reproducible execution for programs.

The blinking LED in CÉU of Figure 1 illustrates how the
synchronous model leads to a simpler reasoning about con-
currency aspects. As reaction times are assumed to be instan-
taneous, the blinking loop takes exactly 3 seconds. Hence,
after 20 iterations, the accumulated time becomes 1 minute
and the loop terminates concurrently with the 1-minute time-
out in parallel. Given that the loop appears first, it will restart
and turn on the LED for the last time. Then, the 1-minute
timeout is scheduled, kills the whole par/or, and turns off the
LED. This reasoning is actually reproducible in practice, and
the LED will light on exactly 21 times for every single execu-
tion of this program. First-class timers are discussed in more
depth in Section 3.5. Note that this static control inference



cannot be easily extracted from the other implementations of
Figure 1, specially considering the presence of two different
timers.

The behavior for the LED timeout just described denotes
a weak abortion, because the blinking trail had the chance
to execute for the last time. By inverting the two trails, the
par/or would terminate immediately, and the blinking trail
would not execute, denoting a strong abortion [5]. CÉU
not only provides means to choose between weak and strong
abortion, but also detects the two conflicting possibilities and
issues a warning at compile time (to be discussed in Sec-
tion 3.2).

Reaction chains should run in bounded time to guarantee
that programs are responsive and can handle upcoming input
events from the environment. Similarly to Esterel [8], CÉU
requires that each possible path in a loop body contains at
least one await or break statement, thus ensuring that loops
never run in unbounded time. Consider the examples that
follow:

loop do
if <cond> then

break;
end

end

loop do
if <cond> then

break;
else

await A;
end

end

The first example is refused at compile time, because the
if true branch may never execute, resulting in a tight loop
(i.e., an infinite loop that does not await). The second vari-
ation is accepted, because for every iteration, the loop either
breaks or awaits.

Enforcing bounded execution makes CÉU inappropri-
ate for algorithmic-intensive applications that require unre-
stricted loops (e.g., cryptography, image processing). How-
ever, CÉU is designed for control-intensive applications and
we believe this is a reasonable price to pay in order to achieve
higher reliability.

3.2 Shared-memory Concurrency
WSN applications make extensive use of shared memory,

such as for handling memory pools, message queues, routing
tables, etc. Hence, an important goal of CÉU is to ensure a
reliable execution for concurrent programs that share mem-
ory.

Concurrency in CÉU is characterized when two or more
trail segments in parallel execute during the same reaction
chain. A trail segment is a sequence of statements separated
by an await.

In the first code fragment that follows, the assignments to
x run concurrently, because both trail segments are spawned
during the same reaction chain. However, in the second code
fragment, the assignments to y are never concurrent, because
A and B represent different external events and the respective

segments can never execute during the same reaction chain:

var int x=1;
par/and do

x = x + 1;
with

x = x * 2;
end

input void A, B;
var int y=0;
par/and do

await A;
y = y + 1;

with
await B;
y = y * 2;

end

Note that although the variable x is accessed concur-
rently in the first example, the assignments are both atomic
and deterministic (due to the scheduling policy and run to
completion semantics): the final value of x is always 4 (i.e.
(1+ 1) ∗ 2)). However, programs with concurrent accesses to
shared memory are suspicious, because an apparently in-
nocuous reordering of trails modifies the semantics of the
program (e.g. the previous example would yield 3 with the
trails reordered, i.e., (1∗2+1)).

We developed a compile-time temporal analysis for CÉU
in order to detect concurrent accesses to shared variables, as
follows: if a variable is written in a trail segment, then a con-
current trail segment cannot read or write to that variable,
nor dereference a pointer of that variable type. An analo-
gous policy is applied for pointers vs variables and pointers
vs pointers. The algorithm for the analysis holds the set of all
events in preceding await statements for each variable access.
Then, the sets for all accesses in parallel trails are compared
to assert that no events are shared among them. Otherwise
the compiler warns about the suspicious accesses.

Consider the three examples of Figure 3. The first code
is detected as suspicious, because the assignments to x and p

(lines 11 and 14) may be concurrent in a reaction to A (lines 6
and 13); In the second code, although two of the assignments
to y occur in reactions to A (lines 4-5 and 10-11), they are not
in parallel trails and, hence, are safe. The third code illus-
trates a false positive in our algorithm, as the assignments to
z in parallel can only occur in different reactions to A (lines 5
and 9), as the second assignment awaits two occurrences of
A.

Conflicting weak and strong abortions, as introduced in
Section 3.1, are also detected with the proposed algorithm.
Besides accesses to variables, the algorithm also keeps track
of trails terminations inside a par/or, issuing a warning when
they can occur concurrently. This way, the programmer can
be aware about the existence and its decision between weak
or strong abortion.

The proposed static analysis is only possible due to the
uniqueness of external events within reactions and support
for syntactic compositions, which provide precise informa-
tion about the flow of trails (i.e., which run in parallel and
which are guaranteed to be in sequence). Such precious
information cannot be inferred when the program relies on
state variables to handle control, as typically occurs in event-
driven systems.

We also implemented an alternative algorithm that con-
verts a CÉU program into a deterministic finite automata.
The resulting DFA represents all possible points a program



1 input void A;
2 var int x;
3 var int* p;
4 par/or do
5 loop do
6 await A;
7 if <cnd> then
8 break;
9 end

10 end
11 x = 1;
12 with
13 await A;
14 *p = 2;
15 end

input void A, B;
var int y;
par/or do
await A;
y = 1;

with
await B;
y = 2;

end
await A;
y = 3;

input void A;
var int z;
par/and do
await A;
z = 1;

with
await A;
await A;
z = 2;

end

Figure 3. Automatic detection for concurrent accesses to
shared memory.
The first example is suspicious because x and p can be accessed concur-
rently (lines 11 and 14). The second example is safe because accesses
to y can only occur in sequence. The third example illustrates a false
positive in our algorithm.

1 C do
2 #include <assert.h>
3 int I = 0;
4 int inc (int i) {
5 return I+i;
6 }
7 end
8 C _assert(), _inc(), _I;
9 _assert(_inc(_I));

Figure 4. A CÉU program with embedded C definitions.
The globals I and inc are defined in the C block (lines 3 and 4), and
are imported by CÉU in line 8. C symbols must be prefixed with an
underline to be used in CÉU (line 9).

can reach during runtime and, hence, eliminates all false pos-
itives. However, the algorithm is exponential and may be
impractical in some situations. That said, the simpler static
analysis executes in negligible time for all implementations
to be presented in Section 4 and does not detect any false
positives, suggesting that the algorithm is practical.
3.3 Integration with C

Most existing operating systems and libraries for WSNs
are based on C, given its omnipresence and level of portabil-
ity across embedded platforms. This way, it is fundamental
that programs in CÉU have access to all functionality the un-
derlying platform already provides.

In CÉU, any identifier prefixed with an underscore is
repassed as is to the C compiler that generates the final
binary. This way, access to C is seamless and, more im-
portantly, easily trackable. CÉU also supports C blocks to
define new symbols, as Figure 4 illustrates. Code inside
“C do ... end” is also repassed to the C compiler for the fi-
nal generation phase. As CÉU mimics the type system of
C, values can be easily passed back and forth between the
languages.

C calls are fully integrated with the static analysis pre-

1 pure _abs(); // side-effect free
2 deterministic // ’led0’ vs ’led1’ is safe
3 _Leds_led0Toggle with _Leds_led1Toggle;
4 var int* buf1, buf2; // point to different buffers
5 deterministic // ’buf1’ vs ’buf2’ is safe
6 buf1 with buf2;

Figure 5. Annotations for C functions.
Function abs is side-effect free and can be concurrent with
any other function. The functions Leds led0Toggle and
Leds led1Toggle can execute concurrently. The variables buf1

and buf2 can be accessed concurrently (annotations are also applied
to variables).

sented in Section 3.1 and cannot appear in concurrent trails
segments, because CÉU has no knowledge about their side
effects. Also, passing variables as parameters counts as read
accesses to them, while passing pointers counts as write ac-
cesses to those types (because functions may dereference and
assign to them). This policy increases considerably the num-
ber of false positives in the analysis, given that many func-
tions can actually be safely called concurrently. Therefore,
CÉU supports syntactic annotations to relax the policy ex-
plicitly. C annotations, which are illustrated in Figure 5, are
described as follows:

• The pure modifier declares a C function that does not
cause side effects, allowing it to be called concurrently
with any other function in the program.

• The deterministic modifier declares a pair of variables
or functions that do not affect each other, allowing them
to be used concurrently.

CÉU does not extend the bounded execution analysis to
C function calls. On the one hand, C calls must be care-
fully analyzed in order to keep programs responsive. On the
other hand, they also provide means to circumvent the rigor
of CÉU in a well-marked way (the special underscore syn-
tax). Evidently, programs should only recur to C for I/O op-
erations that are assumed to be instantaneous, but never for
control purposes.
3.4 Local Scopes and Finalization

Local declarations for variables bring definitions closer
to their use in programs, increasing the readability and con-
tainment of code. Another benefit, specially in the context of
WSNs, is that blocks in sequence can share the same mem-
ory space, as they can never be active at the same time. The
syntactic compositions of trails allows the CÉU compiler to
statically allocate and optimize memory usage [22]: mem-
ory for trails in parallel must coexist; trails that follow rejoin
points reuse all memory.

However, the unrestricted use of locals may introduce
subtle bugs when dealing with pointers and C functions inter-
facing with device drivers. Given that hardware components
outlive the scope of any local variable, a pointer passed as
parameter to a system call may be held by a device driver
until after the referred variable goes out of scope, leading to
a dangling pointer.

The code snippet in Figure 6 was extracted from our im-
plementation of the CTP collection protocol [32]. The pro-
tocol contains a complex control hierarchy in which the trail



1 <...>
2 par/or do
3 <...> // stop the protocol or radio
4 with
5 <...> // neighbour request
6 with
7 loop do
8 par/or do
9 <...> // resend request

10 with
11 await (dt) ms; // beacon timer expired
12 var _message_t msg;
13 payload = _AMSend_getPayload(&msg, ...);
14 <prepare the message>
15 _AMSend_send(..., &msg, ...);
16 await CTP_ROUTE_RADIO_SENDDONE;
17 end
18 end
19 end

Figure 6. Unsafe use of local references.
The period in which the radio driver manipulates the reference to msg
passed by AMSend send (line 15) may outlive the lifetime of the vari-
able scope, leading to an undefined behavior in the program.

that sends beacon frames (lines 11-16) may be killed from
multiple par/or trails (all collapsed in lines 3, 5, and 9). Now,
consider the following behavior: The sending trail awakes
from a beacon timer (line 11). The local message buffer
(line 12) is prepared and sent to the radio driver (line 13-
15). While waiting for an acknowledgment from the driver
(line 16), the protocol receives a request to stop (line 3) that
kills the sending trail and makes the local buffer to go out
of scope. As the radio driver runs asynchronously and still
holds the reference to the message (passed in line 15), it may
manipulate the dangling pointer. A possible solution is to
cancel the message send in all trails that can kill the sending
trail (through a call to AMSend cancel). However, this would
require to expand the scope of the message buffer, add a state
variable to keep track of the sending status, and duplicate the
code, increasing considerably the complexity of the applica-
tion.

CÉU provides a safer and simpler solution with the fol-
lowing rule: C calls that receive pointers require a finaliza-
tion block to safely handle referred variables going out of
scope. This rule prevents the previous example to compile,
forcing the relevant parts to be be rewritten as

1 C nohold _AMSend_getPayload();
2 <...>
3 var _message_t msg;
4 <...>
5 finalize
6 _AMSend_send(..., &msg, ...);
7 with
8 _AMSend_cancel(&msg);
9 end

10 <...>

First, the nohold annotation informs the compiler that
the referred C function does not require finalization code
because it does not hold references (line 1). Second, the

finalize construct (lines 5-9) automatically executes the with

clause (line 8) when the variable passed as parameter in the
finalize clause (line 6) goes out of scope. This way, regard-
less of how the sending trail is killed, the finalization code
politely requests the OS to cancel the ongoing send opera-
tion (line 8).

All network protocols that we implemented in CÉU use
this finalization mechanism for message sends. We looked
through the TinyOS code base and realized that from the 349
calls to the AMSend.send interface, only 49 have correspond-
ing AMSend.cancel calls. We verified that many of these sends
should indeed have matching cancels because the component
provides a stop interface for clients. In nesC, because mes-
sage buffers are usually globals, a send that was not properly
canceled can only lead to an extra packet transmission that
wastes battery. However, in the presence of message pools,
a misbehaving program can change the contents of a (not
freed) message that is actually about to be transmitted, lead-
ing to a subtle bug that is hard to track.

The finalization mechanism is fundamental to preserve
the orthogonality of the par/or construct, thus avoiding to
handle trail termination by tweaking other trails in parallel.

3.5 First-class Timers
Activities that involve reactions to wall-clock time3 ap-

pear in typical patterns of WSNs, such as timeouts and sen-
sor sampling. However, support for wall-clock time is some-
what low-level in existing languages, usually through timer
callbacks or sleep blocking calls. In any concrete system im-
plementation, a requested timeout does not expire precisely
with zero-delay, a fact that is usually ignored in the devel-
opment process. We define the difference between the re-
quested timeout and the actual expiring time as the residual
delta time (delta). Without explicit manipulation, the recur-
rent use of timed activities in sequence (or in a loop) may
accumulate a considerable amount of deltas that can lead to
incorrect behavior in programs.

The await statement of CÉU supports wall-clock time and
handles deltas automatically, resulting in more robust appli-
cations. As an example, consider the following program:

var int v;
await 10ms;
v = 1;
await 1ms;
v = 2;

Suppose that after the first await request, the underly-
ing system gets busy and takes 15ms to check for expiring
awaits. The CÉU scheduler will notice that the await 10ms has
not only already expired, but delayed with delta=5ms. Then,
the awaiting trail awakes, sets v=1, and invokes await 1ms. As
the current delta is higher than the requested timeout (i.e.
5ms > 1ms), the trail is rescheduled for execution, now with
delta=4ms.

CÉU also takes into account the fact that time is a phys-
ical quantity that can be added and compared. For instance,
for the program that follows, although the scheduler cannot

3By wall-clock time we mean the passage of time from the real world,
measured in hours, minutes, etc.



guarantee that the first trail terminates exactly in 11ms, it can
at least ensure that the program always returns 1:

par do
await 10ms;
<...> // any non-awaiting sequence
await 1ms;
return 1;

with
await 12ms;
return 2;

end

Remember that any non-awaiting sequence is considered
to take no time in the synchronous model. Hence, the first
trail is guaranteed to terminate before the second trail, be-
cause 10+1 < 12. A similar program in a language without
first-class support for timers, would depend on the execution
timings for the code marked as <...>, making the reasoning
about the execution behavior more difficult.

3.6 Internal Events
CÉU provides internal events as an instantaneous signal-

ing mechanism among trails in parallel: a trail that invokes
await e can be awoken in the future by a trail that invokes
emit e.

In contrast with external events, which are handled in
a queue, internal events follow a stack policy. In practical
terms, this means that a trail that emits an internal event
pauses until all trails awaiting that event completely react
to it, continuing to execute afterwards. Another difference
to external events is that internal events occur in the same
reaction chain they are emitted, i.e., an emit instantaneously
matches and awakes all corresponding await statements that
were invoked in previous reaction chains4.

The stacked execution for internal events introduces sup-
port for a restricted form of subroutines that cannot express
recursive definitions (either directly or indirectly), resulting
in bounded memory and execution time. Figure 7 shows how
the dissemination trail from our implementation of the DRIP
protocol can be invoked from different parts of the program,
just like a subroutine. The DRIP protocol distinguishes from
data and metadata packets and disseminates one or the other
based on a request parameter. For instance, when the trickle
timer expires (line 8), the program invokes emit send=1 (line
9), which awakes the dissemination trail (line 17) and starts
sending a metadata packet (collapsed in line 18). Note that
if the trail is already sending a packet, than the emit will not
match the await and will have no effect (just like the nesC
implementation does, but using a explicit state variable).

Internal events also provide means for describing more
elaborate control structures, such as exceptions. The code
in Figure 8 handles incoming packets for the CC2420 radio
driver in a loop. After awaking from a new packet notifica-
tion (line 4), the program enters in a sequence to read the
bytes from the hardware buffer (lines 8-16). If any anomaly
is found on the received data, the program invokes emit next

to discard the current packet (lines 10 and 14). Given the ex-
ecution semantics of internal events, the emit continuation is

4In order to ensure bounded reactions, an await statement cannot awake
on the same reaction chain it is invoked.

1 event int send;
2 par do
3 <...>
4 await DRIP_KEY;
5 emit send=0; // broadcast data
6 with
7 <...>
8 await DRIP_TRICKLE;
9 emit send=1; // broadcast meta

10 with
11 <...>
12 var _message_t* msg = await DRIP_DATA_RECEIVE;
13 <...>
14 emit send=0; // broadcast data
15 with
16 loop do
17 var int isMeta = await send;
18 <...> // send data or metadata (contains awaits)
19 end
20 end

Figure 7. A loop that awaits an internal event can emu-
late a subroutine.
The send “subroutine” (lines 16-19) is invoked from three different
parts of the program (lines 5, 9, and 14).

stacked and awakes the trail in line 6, which terminates and
kills the whole par/or in which the emitting trail is paused.
This way, the continuation for the emit never resumes, and
the loop restarts to await the next packet.

4 Evaluation
In order to evaluate the applicability of CÉU in the con-

text of WSNs, we re-implemented a number of protocols
and system utilities from the TinyOS operating system [19],
which are written in nesC [17]. We chose TinyOS and nesC
in our evaluation given its resource efficiency, code base ma-
turity, and because it is used as benchmark in many systems
related to CÉU [12, 21, 4, 3].

Our evaluation consists of the following implementa-
tions: the Trickle timer; the receiving component of the
CC2420 radio driver; the DRIP dissemination protocol; the
SRP routing protocol; and the routing component of the CTP
collection protocol. They are representative of the realm of
system-level development for WSNs [26, 18], which mostly
consists of network protocols and lower level utilities to be
used as services in applications. They are also rich in control
and concurrency aspects, being perfect targets for implemen-
tations in CÉU. Finally, they are open standards [32], with
open implementations.

We took advantage of the component-based model of
TinyOS and all of our ports use the same interface provided
by the nesC counterpart—changing from one implementa-
tion to the other consists in swapping a single file. This
way, we can also use existing test applications available in
the TinyOS repository (e.g. RadioCountToLeds or TestNet-
work)

Figure 9 shows the comparison for Code complexity and
Memory usage between the implementations in nesC and
CÉU, which are discussed in Sections 4.1 and 4.2. The fig-
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Figure 9. Comparison between CÉU and nesC for the re-implemented applications.
The column group Code complexity compares the number of language tokens and global variables in the sources; the group Céu features shows the
number of times each functionality is used in each application; the group Memory usage compares ROM and RAM consumption.

1 <...>
2 event void next;
3 loop do
4 await CC_RECV_FIFOP;
5 par/or do
6 await next;
7 with
8 <...> // (contains awaits)
9 if rxFrameLength > _MAC_PACKET_SIZE then

10 emit next; // packet is too large
11 end
12 <...> // (contains awaits)
13 if rxFrameLength == 0 then
14 emit next; // packet is empty
15 end
16 <...> // (contains awaits)
17 end
18 end

Figure 8. Exception handling in CÉU.
The emit’s in lines 10 and 14 raise an exception to be caught by the
await in line 6. The emit continuations are discarded given that the
surrounding par/or is killed.

ure also details how many times each relevant feature of CÉU
was used in the implementations. In Section 4.3, we evalu-
ate the performance of CÉU with respect to responsiveness,
i.e., its capacity to promptly acknowledge requests from the
environment, such as radio packets arrivals.

4.1 Code Complexity
We use two metrics to compare code complexity between

the implementations in CÉU and nesC: the number of tokens
and the number of global variables used in the source code.
Similarly to comparisons from related works [4, 12], we did
not consider code shared among the implementations, as they

do not represent control functionality and pose no challenges
regarding concurrency aspects (i.e. they are basically predi-
cates, struct accessors, etc.).

We chose to use tokens instead of lines of code because
the code density is considerably lower in CÉU, as most lines
are composed of a single block delimiter from a structural
composition. Note that the languages share the core syntax
for expressions, calls, and field accessors (based on C), and
we removed all verbose annotations from the nesC imple-
mentations for a fair comparison (e.g. signal, call, command,
etc.). The column Code complexity in Figure 9 shows a con-
siderable decrease in the number of tokens for all implemen-
tations (from 23% up to 69%).

Regarding the metric of number of globals, we catego-
rized them in state and data variables.

State variables are used as a mechanism to control the
application flow (on the lack of a better primitive). Keep-
ing track of them is often regarded as a difficult task, hence,
reduction of state variables has already been proposed as a
metric of code complexity in a related work [12]. The im-
plementations in CÉU completely eliminated state variables,
given that all control patterns could be expressed with hier-
archical compositions of activities assisted by internal events
communication.

Data variables in WSN programs usually hold message
buffers and protocol parameters (e.g. sequence numbers,
timer intervals, etc.). In event-driven systems, given that
stacks are not retained across reactions to the environment,
all data variables must be global5. Although the use of lo-
cal variables does not imply in reduction of lines of code
(or tokens), the smallest the scope of a variable, the more

5In the case of nesC, we refer to globals as all variables defined in the
top-level of a component implementation block (which are visible to all
functions inside the component).



readable and less susceptible to bugs the program becomes.
In the CÉU implementations, most variables could be nested
to a deeper scope. The column local data variables in Fig-
ure 9 shows the new depth of each global that became a local
variable in CÉU (e.g. “2;5;6” represents globals that became
locals inside blocks in the 2nd, 5th, and 6th depth level).

The columns below Céu features in Figure 9 point out
how many times each functionality has been used in the im-
plementations in CÉU, helping on identifying where the re-
duction in complexity comes from. As an example, Trickle
uses 2 timers and 3 parallel compositions, resulting in at
most 6 trails active at the same time. Six coexisting trails
for such a small application is justified by its highly control-
intensive nature, and the almost 70% code reduction illus-
trates the huge gains with CÉU in this context.

4.2 Memory Usage
Memory is a scarce resource in WSN motes and it is im-

portant that CÉU does not pose significant overheads in com-
parison to nesC. We evaluate ROM and RAM consumption
by using the simplest available test applications, which were
carefully tweaked to remove extra functionality, so that the
generated binary is dominated by the component of inter-
est. Then, we compiled each application twice: first with the
original component in nesC, and then with the ported compo-
nent in CÉU. The column Memory usage in Figure 9 shows
the consumption of ROM and RAM for the generated appli-
cations. With the exception of the Trickle timer, the results
in CÉU remain below 10% in ROM and 5% in RAM in com-
parison with the implementations in nesC. Our method and
results are similar to those for Protothreads [12], which is an
actively supported system for Contiki [11], with a simple and
lightweight implementation based on a set of C macros.

The results for Trickle illustrate the footprint of the run-
time of CÉU. The RAM overhead of 22% actually corre-
sponds to only 16 bytes: 1 byte for each of the maximum
6 concurrent trails, and 10 bytes to handle synchronization
among timers. As the complexity of the application grows,
this basic overhead tends to become irrelevant. The SRP im-
plementation shows a decrease in RAM, which comes from
the internal communication mechanism of CÉU that could
eliminate a queue. Note that both TinyOS and CÉU de-
fine functions to manipulate queues for timers and tasks (or
trails). Hence, as our implementations mix components in
the two systems, we pay an extra overhead in ROM for all
applications.

We focused most of the language implementation efforts
on RAM optimization, as it has been historically considered
more scarce then ROM [25]. Although we have achieved
competitive results, we expected more gains with memory
reuse for blocks with locals in sequence, because it is some-
thing that cannot be done automatically by the nesC com-
piler. However, we analyzed each ported application and it
turned out that we had no gains at all from blocks in se-
quence. Our conclusion is that sequential patterns in WSN
applications come either from split-phase operations, which
always require memory to be preserved; or from loops,
which do reuse all memory, but in the same way event-driven
systems do.

Operation Duration
Block cipher [20, 16] 1ms
MD5 hash [16] 3ms
Wavelet decomposition [34] 6ms
SHA-1 hash [16] 8ms
RLE compression [31] 70ms
BWT compression [31] 300ms
Image processing [30] 50–1000ms

Table 1. Durations for lengthy operations is WSNs.
CÉU can perform the operations in the green rows in real-time and
under high loads.

4.3 Responsiveness
A known limitation of languages with synchronous and

cooperative execution is that they cannot guarantee to meet
hard real-time deadlines [10, 23]. For instance, the rigorous
synchronous semantics of CÉU forbids non-deterministic
preemption to serve high priority trails. Even though CÉU
ensures bounded execution for reactions, this guarantee is
not extended to C function calls, which are usually preferred
for executing long computations (due to performance and ex-
isting code base). This way, the implementation of a radio
driver purely in CÉU raises questions regarding its respon-
siveness and we conducted two experiments in order to eval-
uate it.

In the first experiment6, we “stress-test” the radio driver
to compare its performance in the CÉU and nesC imple-
mentations. We use 10 motes that broadcast 100 consecu-
tive packets of 20 bytes to a mote that runs a periodic time-
consuming activity. The receiving handler simply adds the
value of each received byte to a global counter. The send-
ing rate of each mote is 200ms (leading to an average of 50
packets per second considering the 10 motes), and the ac-
tivity in the receiving mote runs every 140ms. We run the
experiment varying the duration of the lengthy activity from
1 to 128 milliseconds. We assume that the lengthy operation
is implemented directly in C and cannot be easily split in
smaller operations (e.g. recursive algorithms [10, 23]). This
way, we simulated it with a simple busy wait that will keep
the driver in CÉU unresponsive during that period.

Figure 10 shows the percentage of handled packets in
CÉU and nesC for each duration. Starting from the col-
umn 8ms, the performance of CÉU is 5% worse than the
performance of nesC. Likewise, the nesC driver starts to be-
come unresponsive with operations that take 32ms, which
is a similar conclusion taken from TOSThreads experiments
(25-bytes packets every 50ms, while running a 50-ms opera-
tion [23]). Table 1 shows the duration of some lengthy opera-
tions specifically designed for WSNs found in the literature.
The operations in the group with timings below 6ms could
be used with real-time responsiveness in CÉU (considering
the proposed parameters).

Although we did not perform specific tests to evaluate
CPU usage, the first experiment suggests that the overhead
of CÉU over nesC is lower than 3%, based on the packet

6The experiments use the COOJA simulator [13] running images com-
piled to TelosB motes.



Figure 10. Percentage of received packets depending on
the duration of the lengthy operation.
Note the logarithmic scale on the x-axis. The packet arrival frequency
is 20ms. The operation frequency is 140ms. In the green area, CÉU per-
forms similarly to nesC. The gray area represents the region in which
nesC is still responsive. In the red area, both implementations become
unresponsive (i.e. over 5% packet losses).

Figure 11. Percentage of received packets depending on
the sending frequency.
Each received packet is tied to a 8-ms operation. CÉU is 95% responsive
up to a frequency of 25ms per packet.

losses for the CPU awake full time. (We performed an addi-
tional test omitting the lengthy operation, yielding the same
result of column 1ms in Figure 10.) Note that for lengthy
operations implemented in C, there is no overhead, as the
generated code is the same for CÉU and nesC.

In the second experiment, instead of running an activity
in parallel, we use a 8-ms operation tied in sequence with
every packet arrival to simulate an activity such as encryp-
tion. We now run the experiment varying the rate in the
10 sending motes from 600ms to 100ms. Figure 11 shows
the percentage of handled packets in CÉU and nesC for each
rate of message arrival. The results show that CÉU is 95%
responsive up to frequency of 40 packets per second.

The overall conclusion is that the radio driver in CÉU per-
forms as well as the original driver in nesC under high loads
for programs with lengthy operations of up to 4ms, which is a
reasonable time for control execution and simple processing.
The range between 6ms and 16ms is a “gray area” that offers
opportunities for performing more complex operations, but
that also requires careful analysis and testing. For instance,
the second experiment shows that the CÉU driver can pro-
cess in real time messages arriving every 35ms in sequence
with a 8-ms operation.

Note that our experiments represent a “stress-test” sce-
nario that is atypical to WSNs. Protocols commonly use
longer intervals between messages and mechanisms to avoid
contention, such as randomized timers [26, 18]. Further-

more, WSNs are not subject to strict deadlines, being not
classified as hard real-time systems [25].

4.4 Discussion
CÉU targets control-intensive applications and provides

abstractions that can express program flow specifications
concisely. Our evaluation shows a considerable decrease in
code complexity that comes from logical compositions of
trails through the par/or and par/and constructs. They han-
dle startup and termination for trails seamlessly without ex-
tra programming efforts. We believe that the small overhead
in memory qualifies CÉU as a realistic option for constrained
devices. Furthermore, a broad safety analysis, encompassing
all proposed concurrency mechanisms, ensures that the high
degree of concurrency in WSNs does not pose safety threats
to applications.

As a summary, the following safety properties hold for
all programs that successfully compile in CÉU:

• Time-bounded reactions to the environment (Sec-
tions 3.1 and 3.6).

• Reliable weak and strong abortion among activities
(Sections 3.1 and 3.2).

• No concurrency in accesses to shared variables (Sec-
tion 3.2).

• No concurrency in system calls sharing a resource (Sec-
tion 3.3).

• Finalization for blocks going out of scope (Section 3.4).
• Auto-adjustment for timers in sequence (Section 3.5).
• Synchronization for timers in parallel (Section 3.5).
These properties are desirable in any application and are

guaranteed as preconditions in CÉU by design. Ensuring
or even extracting these properties from less restricted lan-
guages requires significant manual analysis.

Even though the achieved expressiveness and overhead
of CÉU meet the requirements of WSNs, its design imposes
two inherent limitations: the lack of dynamic primitives that
would forbid the static analysis, and the lack of hard real-
time guarantees. Regarding the first limitation, dynamic fea-
tures are already discouraged due to resource constraints.
For instance, even object-oriented languages targeting WSNs
forbid dynamic allocation [3, 33].

To deal with the second limitation, which can be critical
in the presence of lengthy computations, we can consider the
following approaches: (1) manually placing pause statements
in tight loops; (2) integrating CÉU with a preemptive system.
The first option requires to rewrite the lengthy operations in
CÉU with pause statements so that other trails can be inter-
leaved with them. This option is the one recommended in
many related works that provide a similar cooperative prim-
itive (e.g. pause [6], PT YIELD [12], yield [21], post [17]). For-
tunately, CÉU and preemptive threads are not mutually ex-
clusive. For instance, TOSThreads [23] proposes a message-
based integration with nesC that is safe and matches the se-
mantics of CÉU external events.

5 Related Work
CÉU is strongly influenced by Esterel [8] in its support

for compositions and reactivity to events. However, Esterel
is focused only on control and delegates to programmers
most efforts to deal with data and low-level access to the un-



Language Complexity Safety

name year 1: sequential
execution

2: local
variables

3: parallel
compositions

4: internal
events

5: deterministic
execution

6: bounded
execution

7: safe shared
memory

8: finalization
blocks

Preemptive many ✔ ✔ ✔ rt

nesC [18] 2003 ✔ async ✔

OSM [23] 2005 ✔ ✔ ✔

Protothreads [13] 2006 ✔ ✔

TinyThreads [28] 2006 ✔ ✔ ✔

Sol [22] 2007 ✔ ✔ ✔ ✔ ✔

FlowTalk [4] 2011 ✔ ✔

Ocram [5] 2013 ✔ ✔ ✔

Céu ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Figure 12. Table of features found in related work to CÉU.
The languages are sorted by the date they first appeared in a publication. A gray background indicates where the feature first appeared (or a
contribution if it appears in a CÉU cell).

derlying platform. For instance, read/write to shared mem-
ory among threads is forbidden, and avoiding conflicts be-
tween concurrent C calls is left to programmers [6]. CÉU
deals with shared memory and C integration at its very core,
with additional support for finalization, conflict annotations,
and a static analysis that permeates all languages aspects.
This way, CÉU could not be designed easily as pure exten-
sions to Esterel.

Figure 12 presents an overview of work related to
CÉU, pointing out supported features which are grouped by
those that reduce complexity and those that increase safety.
The line Preemptive represents languages with preemptive
scheduling [7, 23], which are summarized further. The re-
maining lines enumerate languages with goals similar to
those of CÉU that follow a synchronous or cooperative ex-
ecution semantics.

Many related approaches allow events to be handled in
sequence through a blocking primitive, overcoming the main
limitation of event-driven systems (column 1 [12, 4, 27, 3,
21]). As a natural extension, most of them also keep the
state of local variables between reactions to the environment
(column 2). In addition, CÉU introduces a reliable mecha-
nism to interface local pointers with the system through fi-
nalization blocks (column 8). Given that these approaches
use cooperative scheduling, they can provide deterministic
and reproducible execution (column 5). However, as far as
we know, CÉU is the first system to extend this guarantee for
timers in parallel.

Synchronous languages first appeared in the context of
WSNs through OSM [22] and Sol [21], which provide par-
allel compositions (column 3) and distinguish themselves

from multi-threaded languages by handling thread destruc-
tion seamlessly [28, 5]. Compositions are fundamental for
the simpler reasoning about control that made possible the
safety analysis of CÉU. Sol detects infinite loops at compile
time to ensure that programs are responsive (column 6). CÉU
adopts the same policy, which first appeared in Esterel. Inter-
nal events (column 4) can be used as a reactive alternative to
shared-memory communication in synchronous languages,
as supported in OSM [22]. CÉU introduces a stack-based
execution that also provides a restricted but safer form of
subroutines.

nesC provides a data-race detector for interrupt handlers
(column 7), ensuring that “if a variable x is accessed by
asynchronous code, then any access of x outside of an atomic
statement is a compile-time error” [17]. The analysis of CÉU
is, instead, targeted at synchronous code and points more
precisely when accesses can be concurrent, which is only
possible given its restricted semantics. Furthermore, CÉU
extends the analysis for system calls (commands in nesC)
and control conflicts in trail termination. Although nesC
does not enforce bounded reactions, it promotes a cooper-
ative style among tasks, and provides asynchronous events
that can preempt tasks (column 6), something that cannot be
done in CÉU.

On the opposite side of concurrency models, lan-
guages with preemptive scheduling assume time indepen-
dence among processes and are more appropriate for applica-
tions involving algorithmic-intensive problems. Preemptive
scheduling is also employed in real-time operating systems
to provide response predictability, typically through priori-
tized schedulers [7, 14, 15, 23]. The choice between the two



models should take into account the nature of the application
and consider the trade-off between safe synchronization and
predictable responsiveness.
6 Conclusion

We present CÉU, a system-level programming language
targeting control-intensive WSN applications. CÉU is based
on a synchronous core that combines parallel composi-
tions with standard imperative primitives, such as sequences,
loops and assignments. Our work has two main contribu-
tions: (1) a resource-efficient synchronous language that can
express control specifications concisely; (2) a wide set of
compile-time safety guarantees for programs with shared-
memory concurrency and access to the underlying platform
through C.

We argue that the dictated safety mindset of our design
does not lead to a tedious and bureaucratic programming
experience. In fact, the proposed safety analysis relies on
control information that can only be inferred based on high-
level control-flow mechanisms, which results in more com-
pact implementations. Furthermore, CÉU embraces practical
aspects for the context WSNs, providing seamless integra-
tion with C and a convenient syntax for timers.

The resource-efficient implementation of CÉU is suitable
for constrained sensor nodes and imposes a small memory
overhead in comparison to handcrafted event-driven code.
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