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Resumo

Sant’Anna, Francisco; Ierusalimschy, Roberto. Uma Linguagem
Śıncrona Reativa baseada em Invocação Impĺıcita. Rio de
Janeiro, 2009. 65p. Dissertação de Mestrado — Departamento de
Informática, Pontif́ıcia Universidade Católica do Rio de Janeiro.

O paradigma de programação reativa cobre uma vasta gama de aplicações,

tais como jogos e sistemas multimı́dia. As linguagens populares vigentes

negligenciam a programação reativa, não possuindo primitivas com o foco

em sincronismo e interação entre partes de uma aplicação. Nós propomos

uma nova linguagem śıncrona reativa, de estilo imperativo, cujas primiti-

vas são baseadas em mecanismos de invocação impĺıcita não convencionais.

Com este trabalho, nossa intenção é unificar as caracteŕısticas essenciais

de linguagens reativas, mantendo a conveniência de um estilo imperativo

de programação. Um escalonador reativo é responsável pela execução de

reatores, nossas unidades de processamento, baseado nas relações de de-

pendência entre eles constrúıdas dinamicamente. Nessas relações, o fim da

execução de um reator inicia a execução de outro. Além disso, um reator

pode suspender sua execução de modo a esperar pelo término de outro

reator. Reatores executam de acordo com a hipótese de sincronismo, man-

tendo a aplicação sempre pronta para reagir. Nossa linguagem provê, além

do foco em reatividade, programação por dataflow, execução sequencial im-

perativa e uso determińıstico de memória compartilhada.

Palavras–chave
Linguagens de Programação. Programação Reativa.



Abstract

Sant’Anna, Francisco; Ierusalimschy, Roberto. A Synchronous
Reactive Language based on Implicit Invocation. Rio de
Janeiro, 2009. 65p. MsC Dissertation — Departamento de In-
formática, Pontif́ıcia Universidade Católica do Rio de Janeiro.

The reactive programming paradigm covers a wide range of applications,

such as games and multimedia systems. Mainstream languages neglect re-

active programming, lacking language-level primitives that focus on syn-

chronism and interactions within application parts. We propose a new reac-

tive synchronous language, with an imperative style, whose primitives are

based on unconventional implicit invocation mechanisms. With this work,

we intend to unite the essential features of reactive languages while keep-

ing a convenient imperative style of programming. A reactive scheduler is

responsible for executing reactors, our processing units, based on depen-

dency relations between them built dynamically. Our language provides

dataflow programming, sequential imperative execution, and deterministic

use of shared-memory.

Keywords
Programming Languages. Reactive Programming.
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1
Introduction

In concurrent applications like games, program control is mostly guided

by the constant interactions between their entities. Entities may be internal to

the application, such as game characters, monsters, and the scenario; and also

external (or environmental), such as keyboard, network, and also time.

We may consider that such interactions have a reactive nature, that is,

they are defined by cause/effect rules: a triggered action in one entity causes

a reaction into another. As an example, a keyboard press causes a character

movement, which in turn may be sensed by a monster that starts chasing

the character. Interaction, dependency, and reactivity are related concepts in

this scope: interactions are specified by dependency rules, bringing a reactive

nature to the application.

Games also have constraints on how they should be permanently syn-

chronized with the environment, and are examples of real-time systems. Be-

ing a real-time system doesn’t imply having critical or high-performance re-

quirements. It implies, however, that operations not performed within a short

bounded time are considered useless or even wrong. For instance, consider the

annoyance of a game character that does not move immediately following user

input, or animations running in a slow frame rate.

This work focuses on design principles, at language level, for applications

with real-time constraints that are also subject to a high degree of interaction

and dependency, not only with the environment, but also within their concur-

rent entities. We refer to this kind of application as reactive systems. Examples

of such systems are, besides games, multimedia, windowing, and simulation

systems.

Concurrency is usually centered on the idea of independent processes1

that, while running, occasionally communicate through message passing or

shared memory. Each process is in charge of its own control flow, and chooses

when and how to synchronize with the outside world. This way, each process

has a very own view of the surrounding environment, not necessarily consistent

1Process as the general concept of a sequence of computations running in a computer
processor, not restricted to the same term used in operating systems and some languages.
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with the rest of the system, as information may change a millisecond after being

exchanged. We consider that process-centric systems follow an asynchronous

model of concurrency.

Reactive systems, however, are usually programmed with control flow

inverted, being guided by the environment and internal interdependencies.

Instead of time-consuming processes as execution units, reactive systems are

composed of (ideally) zero-delay reactions that sit back waiting for changes

in the environment. As soon as stimulus is sensed, the system enters in a

reaction chain to answer the environment. The faster the system reacts, the

more it will be real-time compliant. Differently from processes, reactions share

a global consensus about the surrounding environment due to the inherent

synchronization with it. We consider that environment-centric systems follow

a synchronous model of concurrency.

A common approach for programming with inversion of control using

multipurpose languages is to use event-driven techniques [Meyer], wherein

event handlers represent the zero-delay reactions of synchronous concurrency.

However, this approach is too verbose, as the reactive logic demands the

definition of large amounts of events and handlers. Even worse, sequential

program flow is usually broken in a ”callback soup”, where several small code

chunks access the same data. The lack of a context in callbacks (i.e. local stack)

turns the understanding and maintenance of source code a challenge.

Writing sequential code is a feature most programmers would not like

to renounce to, even when programming reactive systems. Asynchronous pro-

cesses do offer sequential control flow, but, as mentioned, are not under control

of the environment, demanding extra synchronization efforts. An effective al-

ternative is to use synchronous control abstractions like continuations, which

also offer sequential control flow. However, continuations require the notion of

cooperation, rather than reactivity, between them.

The best world seems to reside in a language that combines the reactivity

and loose coupling found in implicit invocation techniques (such as event-

driven programming), with the sequential execution of continuations. This

language should, however, eliminate the verbosity of implicit invocation and

seamless integrate both. Unfortunately, a language with such requirements is

not clearly identifiable at the present moment.

We propose a new abstract language for programming reactive systems,

featuring continuation-like control abstractions as execution units that we call

reactors. Reactors may be dynamically linked in cause/effect relations, so that

one reactor automatically triggers its dependencies on termination. They may

also be suspended to wait for other reactors to terminate. These features
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provide reactivity while allowing code to be written sequentially. Just like

event handlers, reactors are demanded to return (or suspend) fast in order to

keep system’s real-time constraints.

A program in our language is then a collection of interconnected reactors

waiting for environmental stimulus to react. A reactive scheduler is responsible

for the dynamics of the system. Such scheduler starts and resumes reactors

based on the dependency graph that evolves during runtime. As a proof

of concept we present LuaGravity, a Lua implementation of the proposed

language.

This document is organized as follows.

Chapter 2 reviews and compares asynchronous and synchronous classes of

concurrency models, arguing that reactive systems fit better under the latter.

Narrowing the research to the synchronous realm, Chapter 3 presents

some related work on synchronous reactive languages. Three languages are of

special interest, as they served as the main inspirations for this work. NCL

[LFGS06] is a declarative multimedia language with a reactive behavior. Fr-

Time [Cooper04] is a result of recent research on functional reactive program-

ming [Zhanyoung]. Esterel [Boussinot] has an imperative style and was one of

the first reactive languages to appear back in early 80s. To finish the chap-

ter, we evaluate the design of event-driven systems in traditional languages,

illustrating how the studied synchronous languages compare.

Chapter 4 describes our proposed abstract language. We present its

reactive scheduling policy based on implicit invocation, the concept of reactors,

and how dataflow programming is achieved with the language’s imperative

features. We also discuss how the language deals with concurrent access to

shared memory in a predictable way.

Chapter 5 presents LuaGravity, an implementation of the proposed

language on top of the Lua language. We discuss how we extended Lua with

reactivity primitives, and provided some abstractions built over it, such as lifts

and behaviors brought from functional reactive programming.

Chapter 6 presents open issues and gives directions on how they could

be addressed on future work. We conclude our research enumerating the

contributions with the proposed abstract language and implementation.



2
Concurrent Systems

Concurrent systems are composed of interacting entities, running for

an indefinitely period. Concurrency happens not only because entities run

in parallel, but mainly because they communicate and compete for shared

resources.

As system entities must be concretely written in a language and executed

somehow, we need to define precisely what they really are and how they interact

to each other. Instead of going through how each possible language arranges

its concurrency subsystem, we present the main models used for concurrency.

Two concepts are closely related to interactions in concurrent systems

and need to be distinguished: communication and synchronization. By com-

municating, entities exchange data, allowing them to know about each other

states and take further actions. By synchronizing, entities coordinate their con-

trol flows at specific points, allowing them to progress together or isolated at

certain sections of code. Usually, communication takes place in synchronization

points.

2.1 Asynchronous Concurrency

As briefly described in the Introduction, asynchronous systems are com-

posed of independent processes that are in charge of their control flow and

synchronize at their will. Asynchronous processes, while performing compu-

tations, are blind to the surrounding system, that is, independently of what

happens outside, they just keep running. The decision to synchronize is inter-

nal to each process, and not enforced by the environment. For this reason, we

consider asynchronous systems to be process-centric systems. We use process

as a general term, and depending on the actual language, they might be known

as threads, actors, tasks and even processes.

Another fundamental characteristic of asynchronous systems is their

inherent non-deterministic behavior [Lee]. From the perspective of a CPU,

the composition of concurrent processes may be seen as the interleaving of

their statements in a single process. First, it is impossible to predict the
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order in which statements are interleaved, as process scheduling timing is non-

deterministic. Second, for the same reason, each time a concurrent system

restarts, a different scheduling probably takes place. The lack of enforced

synchronization between processes makes impossible to ensure a deterministic

behavior.

Communication between asynchronous processes is always considered to

take time - it is unlikely that both ends will try to communicate at the exactly

same time. This characteristic leads to difficulty in achieving global consensus

over information, as data obtained by the receiving end can reflect a past

state in the sending end. Delayed communication also introduces the need for

buffers, yet another concern to deal with (e.g. overflow and underflow).

Two asynchronous concurrency models are widely known: shared-memory

and message-passing.

By far, the most popular concurrency model is shared-memory, being

used in mainstream languages like Java [Lea], C/C++ (with pthreads [Nichols])

and C# [Birrel]. The idea of sharing memory is simple and tempting, but

underestimates the importance and difficulty of coordinating access to the

memory.

By using shared-memory, communication between processes (known

as threads in this context) is almost implicit: reading and writing to a

shared address is roughly the same as reading and writing to a local one.

Synchronization between threads is usually achieved by serializing access

to critical sections of code (where shared memory is manipulated) through

primitives like mutexes and monitors. Nonetheless, threads are not required

to synchronize when willing to communicate, and not always the programmer

identifies that a communication that needs synchronization is taking place,

leading to the frequent race-condition bugs. The use of monitors [Hoare]

centralizes access to shared resources and is considered good practice.

In the message-passing model, communication and synchronization are

integrated, with the same language primitive being used for both. A process

willing to communicate must synchronize with its counterpart, that is, a

message sent to a process must match a receiving in that process.

In shared-memory concurrency, synchronization is via mutual exclusion;

communication is implicit and through side effects. In message-passing con-

currency, synchronization makes processes to meet; communication is explicit,

side effects free, and always in synchronization points.

Regardless of the differences, the models are considered to be equivalent

[Lauer], being a matter of style and beliefs to choose one or another. Message-

passing is considered by the academy a safer model as much as it is not used
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by the industry, where shared-memory is the rule.

2.2 Synchronous Concurrency

In synchronous systems, the leader of interactions is the environment,

and internal entities must execute at its pace, in permanent synchrony. The

idea of independent processes, each one interacting at their will, is discarded

in this model. The description of synchronous concurrency is usually attached

to its adoption in reactive systems, where the environment plays the principal

role.

The synchronous hypothesis [Butucaru] is the key concept in which

synchronous systems rely on. It states that [Berry92]:

Each reaction (in the system) is assumed to be instantaneous -

and therefore atomic in any possible sense. Synchrony amounts

to saying that the underlying execution machine takes no time to

execute the operations involved in instruction sequencing, process

handling, inter-process communication, and basic data handling

(e.g., additions). To ”take no time” has to be understood in a

very strong sense. First, a reaction takes no time with respect to

the external environment, which remains invariant during it. Sec-

ond, each sub-process also takes no time with respect to other sub-

process ; sub-processes react instantly to each other. In synchronous

languages, inter-process communication is done by instantly broad-

casting events ; all processes therefore share the same vision of their

environment and of each other.

Throughout the text we will the terms instantaneous, immediately, zero-

delay, etc. interchangeably in the sense of the synchronous hypothesis.

Figure 2.1 shows two common implementation schemes for synchronous

systems. [Halbwachs98]

In the first scheme, a change in the environment is described as an input

event. When an event is triggered, the foreach loop is awakened and its body

executed, updating memory and yielding output. Each input event can be seen

as a logical instant, in which all system parts must react synchronously before

going to next instant. During a loop iteration, the environment is invariant

(possibly buffering incoming input events to be processed further). Here, time

is modeled as a sequence of discrete input events.

In the second scheme, an instant is a predefined ”physical” time interval,

where, at each instant, the environment is polled for changes. Then, such
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Figure 2.1: Implementation schemes for synchronous systems

sampling scheme proceeds like the event-driven approach. This form is similar

to how digital circuits are designed, where signals propagate from input to

output gates in a single clock tick.

Both schemes are compliant with the synchronous hypothesis, where

input and resulting output happen at the same time, at least with this notion

of time as a sequence of discrete events or clock ticks.

Reactive behavior, instead of preemptive multitasking, guarantees a de-

terministic execution to synchronous systems. Given the same input configura-

tion, the system will always yield the same output. Again, the notion of time is

a sequence of external events, and not something per-process specific. The sole

order in which the environment generates inputs to the system is the source

of non-determinism (for instance, it is impossible to predict a user interaction

or the network latency).

In synchronous systems, communication is instantaneous. The zero-

delay property of the synchronous hypothesis guarantees that no time elapses

between event announcement and receiving. Also, as communication is via

broadcast, all systems parts share the same information all the time. These two

characteristics make global data consensus another property of synchronous

systems.

The first scheme of implementation resembles the main-loops of event-

driven programming in traditional languages. In fact, event-driven program-

ming is the commonest way of programming synchronous systems. Among the

common problems with this pattern are programming with control inversion

and the lack of stack for managing state [von Behren]. We can consider that

event-driven programming is a low-level way of programming synchronous sys-

tems, not much different than dealing with interrupt handling in hardware.

”Higher-level” synchronous languages do exist; however, they are re-

stricted to academic and very specific industrial niches. Two high-level styles

for programming synchronous systems have arisen.
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In the dataflow style, data is in the form of signals, which are values

varying over time. Programs are networks of operators connecting signals.

Control is implicit - at each clock tick, the values of signals are updated

based on their equations. A delay operator is provided to support the use

of signals’ past values in their own definitions. The dataflow style provides a

declarative way for programming reactive systems, and is effective to describe

dependency between data. Examples of languages supporting this style are

Lustre [Halbwachs91] and Signal [Le Guernic], which are used in applications

such as signal processing and circuit modeling.

The example below shows a node (Lustre’s abstraction for reuse) defining

a generic counter and two instances of it:

node COUNTER (init, inc: int; reset: bool) returns (n: int);

let n = init ->

if reset then

init

else

pre(n)+inc;

tel;

even = COUNT(0, 2, false); //=> 0, 2, 4, 6, 8, 10, ...

mod5 = COUNT(0, 1, pre(mod5=4)); //=> 0, 1, 2, 3, 4, 0, ...

In the control flow style, as its name suggests, control is commanded

explicitly. Statecharts [Harrel] uses a generalization of finite state machines

to specify systems graphically. Esterel [Boussinot], described in Section 3.3,

provides an imperative style with control abstractions like sequential and

parallel compositions, loops and preemption.

After initial research on synchronous languages, dating back to early 80s,

the advent of functional reactive programming [Zhanyoung] has stimulated

new research on this field. A language resulting from recent work, FrTime

[Cooper04], is described in Chapter 3.2.

2.3 Why Synchronous Concurrency?

We defend that the synchronous approach is more appropriate for pro-

gramming reactive systems. Table 2.1 summarizes the main differences between

the synchronous and asynchronous classes of concurrency.

Reactive systems are mainly guided by the environment. Taking a win-

dowing system as an example, most functionality is derived from user inter-

action: mouse clicks to select options, key combinations to trigger shortcuts,
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Table 2.1: Concurrency models comparison

Synchronous Asynchronous
Control environment process
Scheduling reactive preemptive
Synchronization implicit explicit

permanent occasional
Communication instantaneous delayed

broadcast addressed (in message passing)
side effects (in shared-memory)

Determinism deterministic non-deterministic

keyboard input to edit text, and so on. Asynchronous processes in this context

are seen more as an operating system facility to allow multiple applications to

run in parallel (hardly interacting).

Synchronization is a permanent characteristic of reactive systems, not

a desired feature. In a multimedia application, subtitles must be always

synchronized with its correspondent video. Game animations must also be

synchronized with a common time base. In these examples, the physical time,

as elapses, is the continuous environmental stimulus that makes the system to

react synchronously, repositioning animation objects, and advancing subtitles.

Broadcast communication eases the construction of relationships, as they

can be decoupled from its actual participants. For simulation software, new

agents may be added with little effort, as existing agents need not to be changed

in order to communicate with new ones.

Instantaneous communication and zero-delay reactivity, in contrast to

delayed communication and preemptive scheduling, are simpler ways to reason

about a system behavior.

Finally, non-determinism is generally an undesired feature. It should be

added only carefully in specific points or where it is inevitable.

Instead of completely refusing asynchronous concurrency, we argue that

there are uses in which they are the right/only answer. CPU intensive algo-

rithms that seldom interact have nothing to gain with synchronization. Net-

work communications are also incompatible with the synchronous approach,

as instantaneous communication is impossible, and broadcast communication,

rather expensive. In a synchronous world, such operations must be wrapped

into asynchronous calls.

In [Berry00], Berry compares the concurrency models, making an analogy

with real world physics. He pairs the synchronous model with Newtonian

mechanics, and asynchronous with Einstein’s relativity theory. He argues that
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Newtonian physics is good enough to model most problems, yet much simpler

to reason and implement.



3
Synchronous Reactive Languages

After discouraging asynchronous concurrency for designing reactive sys-

tems, we dig into existing synchronous alternatives.

We start the chapter investigating three synchronous languages that

served as inspirations and references for this work. Each of these languages

has features that we consider essential for a reactive language. NCL [LFGS06],

although not historically linked to research on synchronous reactive lan-

guages, is a declarative multimedia language with reactive behavior. FrTime

[Cooper04] is a result of more recent research on functional reactive program-

ming [Zhanyoung]. Esterel [Boussinot] has an imperative style and was one of

the first reactive languages to appear back in the early 80s.

We finish the chapter reviewing the event-driven programming paradigm,

which shares similarities with the presented languages. We classify design

characteristics to be considered when adopting implicit invocation mechanisms

in conventional languages, and point out how such characteristics were adopted

in the studied synchronous languages.

3.1 NCL

NCL (Nested Context Language) [LFGS06] is an XML application

language based on the Nested Context Model (NCM) [LFGS05], a model for

hypermedia document specification, with temporal and spatial synchronization

relationships among media objects.

The middleware Ginga [LFGS07], part of the Brazilian standard for

digital TV, adopted NCL as its main authoring language for writing interactive

applications.

An NCL document only specifies how media objects relate on time and

space, not carrying actual media contents. As a glue language, NCL does not

restrict or define what kinds of media are supported, a role delegated to plug-

ins.

The application below exhibits an image in parallel with a video playback:

<media id="myvideo" src="video.mpg"/>
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Figure 3.1: NCL State Machine

<media id="myimage" src="image.jpg"/>

<link>

<bind role="onBegin" component="myvideo"/>

<bind role="start" component="myimage"/>

</link>

<link>

<bind role="onEnd" component="myvideo"/>

<bind role="stop" component="myimage"/>

</link>

The main concepts of NCL, already present in the above example, are

nodes and links.

Nodes come in two flavors, composite nodes and content nodes. Composite

nodes are collection of nodes, while content nodes (the <media> tag in

the example) represent actual media objects. Each node has an associated

presentation state machine that controls its exhibition. Figure 3.1 shows the

existing states and transitions in the machine.

The link is the reactivity primitive of NCL, connecting conditions to

actions in media nodes. The <bind> tags are used to specify the conditions

and actions in a link, where their component parameter defines the node to be

related, and the role parameter indicates the condition/action. As shown in

the example, an action role uses the transition name in a node state machine

(start, stop), while a condition role uses a special name for the transition being

used as condition (for example, onBegin is related to the start transition, while

onEnd, to the stop transition).

The <context> tag of NCL groups nodes and links in a common

container. Just like content nodes, contexts also have presentation state

machines, and may be synchronized in links likewise. A start in a composite

node activates its internal links and starts the media node defined as its

entry port. A stop transition breaks all internal links, and stops the media
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objects currently running. As an illustrative example, suppose a level in a game

is represented as a context node with enemies, items, timers, and relations

between them. A stop in the level context would stop all entities and relations

automatically, serving as a straightforward bookkeeper. Composite nodes of

NCL are powerful abstractions and unlikely to exist in asynchronous languages,

where stopping a thread is considered unsafe. [Sun Microsystems]

NCL shows an uncommon characteristic as it symmetrically maps tran-

sitions to transitions in relationships between media nodes. Transitions, more

than representing the occurrence of events, also carry actual actions (for ex-

ample, the start transition really starts media playback), justifying such sym-

metric mapping in relationships. Event-driven systems usually map events to

function calls (callbacks), leading to more verbosity, as extra steps to define

and post events are required.

3.2 FrTime

FrTime [Cooper08, Cooper04, Cooper06] is a functional reactive language

built on top of Scheme. Research on functional reactive programming (FRP)

emerged in the last 10 years [Zhanyoung, Nilsson, Elliot], following initial

work on dataflow languages in the early eighties, such as Lucid [Ashcroft],

Lustre [Halbwachs91] and Signal [Le Guernic].

The key concept of FRP is the signal, or time-varying value, which comes

in two forms, events and behaviors.

Events are not much unlike those of traditional event-driven program-

ming, and are used to model external interactions, such as user input. In Fr-

Time, events are represented as streams, where modified versions of traditional

list-processing functions such as map and filter can be applied.

Behaviors, the other form of signals, carry dependency among themselves,

and are the most exciting feature of FRP and dataflow languages. For instance,

if a and b are behaviors, the result of writing the expression a + b is another

behavior that is updated when a or b is changed, recalculating the initial

assignment. This way, the result of the expression will always hold the sum of

a and b.

FrTime offers several system behaviors to be used in programs. One of

them is seconds, holding the current elapsed number of seconds at every mo-

ment. The simple evaluation of seconds in the DrScheme interpreter [Findler]

exhibits the elapsing number on screen. Another example is mouse-pos, hold-

ing the current mouse position. The evaluation of the program below exhibits

a blue circle that ”magically” follows the mouse position:
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(display-shapes

(list (make-circle mouse-pos 20 "blue")))

In the example, display-shapes receives a list of shapes to show on

screen. make-circle receives a container with x and y coordinates (mouse-pos,

in this example), a radius, and a color. When the mouse moves, mouse-pos is

updated, making the circle to follow the mouse.

Writing this program using event handlers would demand the use of

callbacks and explicit state control (i.e. side effects). Besides requiring more

lines, the definition would not be as self-contained as that of the previous

example.

Another primitive found in FRP languages, including FrTime, is the

integral [Cooper04]. This primitive is essential for any kind of animations. The

following example shows a circle crossing the screen in both axis with the speed

of one pixel per second.

(display-shapes

(list (make-circle

(make-posn (integral 1) (integral 1))

20

"blue")))

In the example, make-posn creates a container for x and y coordinates.

By using integral, the coordinates are incremented one pixel each second.

When using behaviors in expressions with function applications or oper-

ators, it is expected that the result become also a behavior. However, functions

and operators in conventional languages like Scheme are not prepared to ac-

cept behaviors as parameters. It is necessary, then, to modify each of these

operations to work with behaviors, a process known as lifting. FrTime modi-

fies Scheme in such a way that function/operator lifting is transparent to the

programmer.

FrTime employs on its implementation the event-driven approach of

Figure 2.1, which Cooper names as push-driven update mechanism [Cooper06]:

Events initiate computation, and changes cause dependent parts of

the program to recompute.

A graph is used to keep dependency among behaviors. When a behavior

is changed, the graph is traversed to recalculate dependencies. Figure 3.2 shows

the graph for the expression (< seconds (+ 1 seconds)).

One concern that must be addressed is how to traverse the graph on

updates. The previous expression (< seconds (+ 1 seconds)) is illustrative
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Figure 3.2: Graph for expression (< seconds (+ 1 seconds))

for this purpose. As an invariant, the value for the expression is always true,

as seconds is always smaller than its own increment. Looking at the graph

in Figure 3.2, there are two edges leaving the seconds node, and one of

them is updated first. When seconds changes, if the whole expression is

updated before the subexpression (+ 1 seconds) is, the invariant will be

broken for an infinitesimal time (until the subexpression is updated). To avoid

this phenomenon, known as glitch [Cooper06], the graph must be traversed in

topological order.

Another concern is the presence of cycles in the graph, possible when

two behaviors depend on each other. The same algorithm used to calculate

topological order might be used to detect cycles. Cycles are a recurrent issue

in synchronous languages [Cooper06, Berry-Primer], and are worked around

with the use of a delay operator, which FrTime also offers.

FrTime considers events and behaviors to be duals [Cooper08], and puts

research efforts on behaviors, where most discussion is taken. Events are

extended with a functional taste, but are still used in traditional fashion.

3.3 Esterel

Esterel [Berry92, Berry00, Boussinot] is among the oldest synchronous

languages. Contemporary languages to Esterel such as Lustre and Signal use a

declarative style and are suitable for dataflow applications, as seen in Sections

2.2 and 3.2. Esterel uses the imperative style, and no other popular imperative

synchronous language has appeared.

Boussinot [Boussinot] summarizes the motivations behind Esterel as

Esterel = reactivity + atomicity of reactions + instantaneous

broadcast + determinism

These characteristics have been described in Section 2.2.

Esterel designers usually advocate that Esterel programs are similar to

their specification [Berry00, Boussinot]. Such claim is exemplified with the

following specification:
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Emit the output O as soon as both the inputs A and B have been

received. Reset the behavior whenever the input R is received.

In Esterel, the implementation for this specification is as follows:

module ABRO:

input A, B, R;

output O;

loop

[ await A || await B];

emit O

each R

end

The program first defines its input and output signals. Then, it enters in

a loop that is restarted on each R received. The loop body first awaits both A

and B, and then emits O.

In Esterel, || is the parallel operator, while ; is the sequencing operator.

This way, await A and await B run in parallel, and emit O is only executed

after both awaits return. The await primitive suspends the running activity

until the given signal is emitted somewhere.

The communication units in Esterel are the signals1. A signal is equiva-

lent to an event of event-driven programming, and can be instantly broadcast

to the entire application, waking up its listeners. Signals are emitted with

the emit primitive and caught with await and other temporal constructs like

loop-each. The emit command may pass a value along with the signal, as in

emit X(1). The value of a signal may be accessed prefixing it with ?, as in

v := v + ?X.

Esterel supports a rich set of preemption constructs, used to structure

activities in hierarchies. Similar to contexts of NCL, they ease the manage-

ment of activities. The following example, extracted from [Berry00], uses the

every-do-end, loop-each, and abort-when constructs:

module Runner:

input Morning, Step, Second, Meter, Lap;

every Morning do

abort

loop

abort <RunSlowly> when 15 Second;

1Not to be confused with those of FrTime.
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abort

every Step do

<Jump> || <Breathe>

end

when 100 Meter;

<FullSpeed>

each Lap

when 2 Lap

end

end

Conventional variables are also supported in Esterel, however they can-

not be freely shared between concurrent statements. In a statement like

[ v := 1 || v := 2 ], the value of v would become non-deterministic, a

situation that is not acceptable in Esterel’s semantics. If a variable is written

in any parallel activity, it cannot be read or written elsewhere.

Besides temporal loops [Berry-Primer] and the await primitive, state-

ments in Esterel are considered to be instantaneous, following the synchronous

hypothesis. Although NCL and FrTime are also compliant with the syn-

chronous hypothesis, the programmer need not to be aware of it, as the zero-

delay reactivity is working under the hoods, in the implementation of the

language. In Esterel, concurrency is explicit, hence, the programmer has to

keep in mind which statements are instantaneous and which take time. Even

so, a program like loop x := x + 1 end is rejected by the compiler as it

constitutes a zero-delay loop.

Among all languages that we have studied during our research, only

Esterel achieved our intent, raised in the Introduction, to conciliate sequential

execution with reactivity. We consider that sequencing along with the await

primitive are the most appealing features of Esterel. However, for dataflow

programming, as accomplished by FrTime, Esterel is not suitable.

3.4 Event-driven programming

All synchronous languages we have looked during this research have a lot

in common with event-driven programming due to instantaneous broadcast

communication and reactivity. Also, the vocabulary of concepts and imple-

mentation style resembles those of event-driven programming.

Event-driven is the style of programming where procedures are implicitly

called on the occurrence of events [Meyer]. The use of event-driven program-
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ming in traditional languages appears with several names, such as publish-

subscribe and observer patterns, delegates of .NET, etc.

In a running event-driven application, procedures may be registered or

unregistered to be called on events. Event generators are not required to know

in advance which procedures will be implicitly called. Any generated event may

trigger several registered procedures. These characteristics are determinant to

cope with the loose coupling found in event-driven system’s parts.

Nowadays there is a consensus on what is and how to implement event-

driven systems. Regardless of the specific framework in use, an event-driven

system implementation is composed of the following parts:

– Main loop

– Events

– Event queue

– Event dispatcher

– Event handlers

Usually, only events and handlers are visible for the application programmer.

The event-driven subsystem is normally built on top of conventional

languages, which do not offer primitive facilities with events and inversion

of control in mind. As a result, programming such systems tends to excess

verbosity and complexity. Another resulting inefficiency is the presence, in the

same system, of different subsystems or APIs for programming with events. For

instance, an application that handles user input, XML parsing with SAX, and

network communications, will likely have three different APIs in use. Moreover,

each API will have all the machinery listed above reimplemented. This happens

because the event paradigm is present in the library being used, rather than

in the language.

Garlan [Garlan] describes the addition of an implicit invocation subsys-

tem to the language ADA. As the paper is anterior to the consolidation of

event-driven programming, several non-conventional design choices have been

discussed. The following paragraphs enumerate each of them, pointing out cur-

rent choices in traditional languages, and also in the languages presented in

this chapter:

Event definition, or how exactly an event is defined in an application. The

paper suggests a fixed event vocabulary, static event declaration, dynamic

event declaration, or no event declarations at all. Static languages com-

monly use static declaration, while dynamic languages use strings or
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symbols to identify events, not requiring explicit declarations. Esterel

uses static declarations of signals; FrTime uses no declaration of events;

NCL uses fixed events (the pre-defined transitions in presentation state

machines).

Event structure, or what kind of information goes along with an event. The

paper suggests raw events, fixed parameter list, per event type parameter

list, or parameters by announcement. Static languages usually allow

parameters to vary by event type; Dynamic languages vary parameters

per announcement. In Esterel, a signal can hold only a single value;

FrTime varies parameters per announcement; In NCL, each event type

has a fixed parameter list.

Event binding, that is, how to determine which procedures are called on

event announcements. Static or dynamic bindings are considered. Dy-

namic binding, where bindings between events and handlers are created

in runtime, is the rule nowadays.

Event announcement, or how events are broadcast to an application. The

paper suggests using a single procedure, per event procedure, a lan-

guage primitive, or implicit announcement. It’s common to use a single

procedure to announce events, such as postEvent(). Esterel provides

the primitive emit for this purpose; FrTime uses the single procedure

send-event; In NCL, event announcement is implicit, on state changes

in nodes.

Delivery policy, that is, whether all procedures bounded to an event should

be invoked on announcement. The paper suggests full delivery, single

delivery, parameterized selection, or state-based policy. Full delivery is

often used, as it can simulate the other options via proxy procedures.

Concurrency of handlers; pondering if the execution of event handlers

should be parallelized. Although it is apparently an implementation issue,

parallel execution of event handlers is not possible in conventional event-

driven systems due to race conditions in shared state [Zeldovich]. Event-

driven programming and multi-core execution have been considered

antagonistic. Even though, a known manual technique to overcome this

limitation is to give colors to handlers - handlers not sharing colors can

be parallelized [Zeldovich].



4
The Proposed Language

In this chapter, we propose a new programming language with the intend

to unite the essential features of reactive languages. The language extends a

conventional imperative host language with new reactivity primitives.

In our language, a program is a dynamic dependency graph of reactors

(our execution units) waiting for external changes to react. In the graph,

nodes are reactors whose dependency relations are represented by directed

edges connecting them. A program runs in accordance with the synchronous

hypothesis, given that, from an external stimulus, the program instantly reacts

to it.1

Figure 4.1 shows an abstract view of a program. The dotted edges char-

acterize a reaction propagation chain in the program, starting from a stimulus

from the environment. During propagation, the environment is considered to

be immutable.

1 In a real implementation, instantaneous means being fast enough, in a way that
processing time is not noticed.

Figure 4.1: Abstract view of a program
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4.1 Reactors

The execution unit of our language is known as reactor. A reactor is much

like a procedure, with control flow, assignments, and conventional features of

imperative languages. Unlike procedures, reactors may be linked to each other

in cause/effect relations, so that when a reactor terminates, all its dependent

reactors are implicitly called. A reactor may also suspend its own execution

to wait for a specific reactor to terminate, creating a temporary link between

them.

The following list shows the commands that reactors are allowed to

perform:

– Create new reactors.

– Start and stop reactors.

– Create and destroy links between reactors.

– Make itself await other reactors.

– Perform conventional imperative statements.

The complete description for each language primitive is presented in

Section 4.6. Throughout the text, we use capitalized words to identify language

primitives, such as REACTOR (a reactor constructor), giving a brief description

as they first appear.

Reactors run in accordance with the synchronous hypothesis - we consider

that any sequence of commands is atomic and executes instantaneously.

As an introductory example, consider reactors rA, rB, and rC:

rA = REACTOR ()

val = ’a’

END

rB = REACTOR ()

val = ’b’

END

rC = REACTOR ()

val = ’c1’

AWAIT(rB)

val = ’c2’

END

LINK(rA, rC)
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When rA executes, it sets val to a. Just after that, rC is executed, due

to the link from rA, setting val to c1. Then, rC awaits rB. The value of val

remains equal to c1 until rB is triggered somewhere. When rB is executed, it

sets val to b, and awakes rC, which changes val to c2.

The AWAIT call saves the continuation of the running reactor before

suspending it, keeping the local environment and point of suspension to restore

on resume.

Reactors may exchange data on link propagations. In the following code,

the for body passes values to rA, which, in turn, returns their doubles. Due to

the link between rA and rB, the new values returned by rA are passed to rB,

as in a pipeline.

rA = REACTOR (v)

return v*2

END

rB = REACTOR (v)

print(’value ’..v)

END

LINK(rA, rB)

for i=1 to 10

rA(i)

end

--> Output:

--> value 2

--> value 4

--> ...

--> value 20

(a) Reactor State Machine

We model a reactor with the state machine shown in Figure 4.2.

In any given moment, from the point of view of the environment, a reactor

may be in one of the two states:

READY: The reactor is ready to act, either by an explicit spawning, or implicitly,

when a reactor it depends on terminates.

AWAITING: The reactor is awaiting the termination of other reactors to con-

tinue.

The transient state REACTING represents the zero delay execution per-

formed by reactors, while the environment remains unchanged:
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Figure 4.2: Reactor State Machine

REACTING: All processing is performed while in this state. The possible com-

mands are described in Section 4.6. The reactor must leave this transient

state within an infinitesimal time to keep the system reacting to the en-

vironment. The own reactor is responsible for explicitly terminating or

suspending itself, transiting to one of the READY or AWAITING states.

Transitions in italic are performed by the reactive scheduler due to chain

propagations (see Section 4.2). Other transitions are explicit, and have the

same name of the respective primitive described in Section 4.6.

Invalid transitions in reactor state machines are considered errors. For

instance, it is an error to spawn a reactor in the AWAITING state.

4.2 The Reactive Scheduler

In our language, a reactor never executes at its own will. The only way for

a reactor to execute is as consequence of external stimulus. Also, after starting

to execute (i.e. going to the REACTING state), a reactor must instantaneously

terminate or wait (i.e. going to one of READY or AWAITING states). Accordingly,

a reactor never keeps executing after a stimulus.

It follows that, in the meantime between two external stimulus, the

running application is completely idle. The scheduling policy of reactors is

only determined by the dependency graph dynamically built during runtime,

leading to what we call a reactive scheduler.

Starting from an external stimulus, the scheduler traverses the graph

running all dependent reactors until it reaches ”leaf” reactors. We call this

process a full propagation chain, which, due to the synchronous hypothesis,

takes an infinitesimal time to complete. A full propagation chain is also our

definition for an instant within the notion of discrete time of synchronous

languages.

The reactivity primitives are responsible for populating the dependency

graph with three kinds of edges:
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Figure 4.3: Graph for the introductory example

Link edges: Created by LINK calls. The edge connects a source reactor to

a destiny reactor, and states that when the source reactor successfully

terminates, the destiny reactor is implicitly triggered.

Await edges: Created by AWAIT calls. The edge connects the reactor to await

to the continuation of the suspended reactor. Await edges are temporary,

as the scheduler removes them as soon as the suspended reactor is

awakened or stopped.

Promise edges: Created by calls to promises (see further). The edge connects

the spawned reactor to the suspended reactor. Like await edges, promise

edges are also temporary. Unlike await edges, promise edges are also

triggered on cancelled reactors (see the STOP and CANCEL primitives).

Figure 4.3 shows the dependency graph for the introductory example in

Section 4.1.

The sub-nodes 1 and 2 in the figure represent the code chunks in the

reactor rC separated by the call to AWAIT.

The SPAWN primitive is an exception to our language’s reactive schedul-

ing policy through graph traversal, as it explicitly schedules the execution of a

given reactor.2 The SPAWN call acts like a fork, instantaneously scheduling the

spawned reactor and the continuation of the running reactor to run concur-

rently. As the spawned reactor may not terminate with a value immediately,

the SPAWN call returns to the running reactor a promise to that value (also

known as future). In our language, a promise is a function that, when called,

awaits the termination of the correspondent spawned reactor. The return value

of a promise is the same value returned by the spawned reactor when it ter-

minates.3

The following example illustrates the use of SPAWN. Figure 4.4 shows the

dependency graph for this example.

2The reactive property of the language is not broken though, as a SPAWN call is only
possible as a consequence of an external stimulus anyways.

3To simplify the language definition, we chose not to support promises in expressions.
However, if the host language supports lambda functions, it is possible to bypass this
limitation.
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Figure 4.4: Graph derived from SPAWN

rA = REACTOR ()

vA = ’a1’ -- (A1)

p = SPAWN(rB)

vA = ’a2’ -- (A2)

p()

vA = ’a3’ -- (A3)

END

rB = REACTOR ()

vB = ’b1’ -- (B1)

AWAIT(rC)’

vB = ’b2’ -- (B2)

END

rC = REACTOR ()

vC = ’c1’

END

The reactor rA assigns ’a1’ and spawns reactor rB. The call to SPAWN

immediately schedules rB and the continuation of rA (chunk A2 ) to execute

concurrently. The scheduler chooses non-deterministically which one to execute

first. When chunk A2 is executed, it assigns ’a2’ and calls the promise for rB,

creating a temporary promise edge from rB to the last continuation of rA

(chunk A3 ). When rB is spawned, it assigns ’b1’ and awaits rC, creating the

temporary edge from rC to the continuation of rB (chunk B2 ). The execution

of rC awakes rB, which, in turn, awakes rA, and both temporary edges are

destroyed.

The execution of the introductory example is deterministic, as only one

traversal path is possible. In the previous example, however, the scheduler has

two options to proceed on the SPAWN call, and any choice is acceptable. In
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Figure 4.5: Reactor separated in two nodes

Section 4.5 we show that the final effect of a non-deterministic scheduling is

either actually deterministic, or yields a well formed error, when inevitable.

In the graphs for the examples shown in this section, reactors are

expanded in several sub-nodes to represent their continuations. This expanded

view seems the correct approach for representing the dependency graph;

however it demands syntactic analysis of reactors along with a complex

definition of how to split them in continuations.

Our current approach avoids this complexity and takes all decisions at

runtime. For instance, we have no way to predict SPAWN calls without syntactic

analysis; otherwise we could substitute explicit spawns in the graphs for a kind

of spawn edges, unifying the scheduling policy for all primitives.

We actually use only two nodes to represent a reactor, as Figure 4.5

shows. One node represents the reactor entry point, triggered only by link

edges or SPAWN calls. The other node represents the current continuation of the

reactor, triggered by await or promise edges. A continuation may terminate the

reactor, triggering outgoing edges of any type. As a reactor can only be waiting

in a single internal point at a time, then only one node for continuations is

needed.4

4.3 Cycles and Glitches

(a) Tight Cycles

A tight cycle [Cooper04] happens when a reactor is re-executed during

the same propagation chain due to a dependency on itself. For instance, the

statement LINK(rA, rA) creates a cycle, given that, when rA executes, it will

trigger itself indefinitely. As a full propagation chain represents a time unit, it

4The same argument justifies why we use only one AWAITING state per reactor (see Section
4.1(a)).
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Figure 4.6: Graph subject to glitches

is conceptually wrong to have a reactor executing infinitely in the very same

instant.

A path in the dependency graph that passes through delayed reactors5

never characterizes tight cycles. Hence, the statement LINK(rA, rA) may

actually not create a tight cycle if rA is a delayed reactor.

As a workaround to break tight cycles, we provide the PAUSE primitive,

which suspends the execution of the running reactor for the current propaga-

tion cycle, scheduling the reactor to run in the following instant. In Section

4.4, we show a common application of this primitive.

The scheduler detects tight cycles when adding edges to the dependency

graph. However, because the SPAWN call circumvents the graph structure,

the scheduler also needs to check if a reactor is being re-executed during a

propagation chain.

(b) Glitches

A glitch is an unwanted situation when a reactor is re-executed from

different paths during a graph traversal (i.e. not depending on itself).

Suppose a program as follows, leading to the graph of Figure 4.6:

rA = REACTOR () a = random() END

rB = REACTOR () b = random() END

rC = REACTOR () c = a + b END

LINK(rA, rB)

LINK(rA, rC)

LINK(rB, rC)

5Reactors that are suspended before terminating, either by calling AWAIT, PAUSE, or a
promise.



Chapter 4. The Proposed Language 37

If the scheduler traverses the graph using depth first search or breadth

first search, rC will be possibly executed before rB and, consequently, before

the variable b is updated. This way, the variable c would evaluate to the sum

of the updated value of a with the not updated value of b. Only after rC is

executed again, now after the termination of rB, that the variable c would

hold the correct value.

This example is equivalent to that of glitches in behaviors of FrTime (see

Section 3.2). However, different consequences for glitches are possible here;

even if rC just printed a constant value on screen, the glitch would indeed

cause the constant to be erroneously printed twice.

The solution applied to our scheduler is the same taken by FrTime:

the graph should be traversed in topological order. With this objective, the

scheduler must keep the height of each reactor, which is its maximum distance

in edges from a reactor that has no incoming edges.

4.4 Dataflow Programming

We intended to have dataflow support in our language built on top of

its imperative primitives. For that matter, we see the LINK primitive as an

essential feature in the language. In Section 4.1 we showed a simple example

of dataflow between two reactors through a link.

Until now, the description and examples for chain propagations showed at

most a pair of reactors exchanging data through links. However, as Figure 4.6

shows, more than one source may cause a reactor to be triggered, each passing

a different argument. Hence, reactors receive a variable number of arguments:6

REACTOR (...) -- variable number of arguments

-- commands

END

(a) Behaviors

Although our language does not provide a primitive for behaviors from

functional reactive programming (see Section 3.2), we can implement them on

top of the available primitives.

The example below is equivalent to the expression C = A + B, where A,

B, and C are behaviors.

a = 0 b = 0 c = 0

6We assume that the imperative host language that we extend handles variable number
of arguments.
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A = REACTOR (v) B = REACTOR (v) C = REACTOR ()

if v == a then if v == b then new = a + b

CANCEL() CANCEL() if new == c then

end end CANCEL()

a = v b = v end

RETURN(v) RETURN(v) c = new

END END RETURN(new)

END

LINK(A, C)

LINK(B, C)

A(1) --> c = 1

B(2) --> c = 3

The current values of variables a, b, and c are normally accessed through

their names. However, to set a and b, their respective reactors A and B must be

called with the value to be assigned. This way, the value of c is automatically

updated due to the links from A and B to C.

As a trivial optimization, if a reactor receives a new value equal to its

variable current value, the reactor terminates with CANCEL, not propagating

dependent reactors.

As shown in Section 4.3(b), the variable c is free from glitches even if A

and B are updated in the same instant.

Undoubtedly, our implementation for behaviors lacks a little of syntactic

sugar and a form of encapsulation. We deal with these issues in Section 5.3.

Integral

An integral behavior is built similarly to behaviors. Suppose a system

reactor DT that constantly executes after a full propagation chain, returning

the infinitesimal time taken for that. In the code below, the variable elapsed

counts the elapsed time since the application starts:

elapsed = 0

INT1 = REACTOR (v)

elapsed = elapsed + v

END

LINK(DT, INT1)
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Figure 4.7: Graph to illustrate concurrent reactors

Mutually dependent behaviors

It is common to have behaviors depending on each other. As an example

[Cooper06], suppose a GUI control that displays colors in RGB and HSV views,

so that changing one view influences the other.

If RGB and HSV are reactors representing behaviors, simply calling

LINK(RGB, HSV) and LINK(HSV, RGB) is wrong, as it creates a tight cycle.

A simple solution is to introduce a mediator reactor, say X, with a PAUSE

statement, as the following code shows:

X = REACTOR (v) LINK(RGB, X)

PAUSE() LINK(HSV, X)

RETURN(v) LINK(X, RGB)

END LINK(X, HSV)

4.5 Determinism

In Section 4.2 we showed an example that resulted in the graph of Figure

4.4, and commented that its traversal is non-deterministic. In fact, any call

to SPAWN, or the termination of a reactor linked to several others, lead to a

situation where reactors are scheduled to run concurrently.

Two reactors are considered to be running concurrently if they both

execute during the same propagation chain, but not as a consequence of one

another. In the graph shown in Figure 4.7, all reactors run as consequence of

A (which is not concurrent to others). B is only concurrent to C, as all other

reactors depend on B; C is concurrent to B, D, E and F; G is only concurrent to

E; and so on.

We argue that, although our scheduler does not define deterministic crite-

ria to execute concurrent reactors, the final effect is predictable, independently

on the order in which they are executed. Furthermore, any semantics given for

a deterministic scheduling would be arbitrary, as in such situations, the re-
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Figure 4.8: Graph with concurrent reactors calling an actuator

actors are really conceptually concurrent. Also, imposing a serial execution

would disallow the use of real parallel execution in multi-core architectures.

To justify that the final effect of a non-deterministic execution is always

predictable, we identify the two situations that can lead to non-deterministic

effects, showing how our language deals with them.

The first situation is when executing external actuators (i.e. output inter-

faces to the surrounding environment), whose side-effects are unpredictable. As

Figure 4.8 shows, actuators are represented as reactors, and thus, are executed

respecting the topological order of the dependency graph. This way, concurrent

reactors willing to invoke the same actuator synchronize before triggering it.

The actuator will be called once, deterministically, receiving all reactors’ invo-

cation parameters. Each actuator implementation decides whether it accepts

or not more than one reactor as teasers, possibly raising an error.

The second situation where non-deterministic effects could appear is

when concurrent reactors share memory. In the following code, reactors rA

and rB are spawned concurrently and they both assign to variable a. The final

value for a may be 1 or 2, depending on which reactor executes last.

rA = REACTOR (v) a = v END

rB = REACTOR (v) a = v END

SPAWN(rA, 1)

SPAWN(rB, 2)

Our language refuses this kind of concurrent access, raising a non-

deterministic access error. During a full propagation chain, if a variable is

written, it cannot be read or written concurrently.

At each propagation chain, we track access to variables, holding the

reactor and mode on each access. If concurrent reactors access the same

variable in incompatible mode (i.e. write vs. read or write vs. write), then

the scheduler raises an error.



Chapter 4. The Proposed Language 41

(a) Intended Non-determinism

Some programs are inherently non-deterministic. Suppose that a given

resource, shared among reactors, can only be used exclusively. In the following

code, we define a holder variable to indicate which reactor is currently holding

the shared resource.

holder = nil -- resource is initially free

rFree = REACTOR ()

holder = nil

END

-- reactors sharing the resource

r[1..N] = REACTOR ()

-- tries to hold the resource

while true

if holder == nil then

holder = <i> -- reactor index (1..N)

break

end

AWAIT(rFREE)

end

... -- safely uses the resource

SPAWN(rFREE) -- frees the resource

... -- continues w/o the resource

END

for i=1 to N do

SPAWN(r[i])

end

The while body (inside each sharing reactor) is safe, as it tests whether

the variable holder is nil before assigning to it. However, as all reactors are

spawned at the same time, concurrent access to the holder variable raises

a non-deterministic access error, as one reactor writes to the variable while

others read it.

We provide the NONDET primitive, which receives a variable as parameter

and allows it to be concurrently accessed. In the example, a previous call to

NONDET(holder) would allow the program to run without errors.
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Keep in mind that non-deterministic variables hold unpredicted values

when accessed in incompatible mode by concurrent reactors. Use of non-

deterministic variables is unsafe and requires caution. Even so, comparing to

shared memory of multi-threading, we believe that our approach is superior.

First, the programmer must explicitly turn on such unsafe mechanism, which is

restricted to variables set by NONDET. Second, mutual exclusion for protecting

critical sections of code is not needed, as every code chunk in reactors is already

atomic.

4.6 Language Primitives

Follows the comprehensive list of the language primitives:

reactor <- REACTOR (...) <body> END

Creates a new reactor with the given body of commands. Returns a

reference to the created reactor.

A reactor receives a variable number of arguments (...), with the return

values of the source reactors responsible for triggering it.

promise <- SPAWN (reactor, param)

Spawns the execution of the given reactor, passing a parameter. The

spawned reactor runs concurrently with the continuation of the running

reactor.

The call returns a promise, a function that, when executed, awaits the

termination of the spawned reactor. The return value of a promise is the value

returned by the spawned reactor when it terminates.

STOP (reactor)

Terminates the execution of the given reactor, cancelling it.

Reactors linked to (or awaiting) it are not triggered. Associated promises

have their return values set to CANCELLED.

RETURN (value)

Terminates the running reactor successfully with the given value.

It will eventually trigger the execution of reactors linked to it. Associated

promises have their return values set to value.
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CANCEL ()

Terminates the running reactor, cancelling it.

Reactors linked to (or awaiting) it are not triggered. Associated promises

have their return values set to CANCELLED.

break <- LINK (srcReactor, dstReactor)

Creates a link between srcReactor and dstReactor. Returns a com-

mand that, when executed, breaks the link.

A link determines that as srcReactor terminates successfully,

dstReactor is implicitly triggered. Cancelled or stopped reactors (see above)

do not trigger reactors linked to it. The returned value of srcReactor is

passed to the body of dstReactor.

If a source reactor links to several destiny reactors, its termination makes

all of them to run concurrently.

retJ, ..., retK <- AWAIT (r1, r2, ..., rN)

Makes the running reactor await the successful termination of one of

the received reactors. Further actions are not executed until the reactor is

awakened.

The call returns the values retJ,...retK after being awakened. These

values are the return values of the reactors responsible for awaking the

suspended reactor.

PAUSE ()

Suspends the execution of the running reactor for the current propagation

cycle, scheduling the reactor to run in the following instant. May be used to

break tight cycles.

NONDET (variable)

Allows the received variable to be accessed non-deterministically by

concurrent reactors.

Normally, once a variable is written, it cannot be read or written by

concurrent reactors.
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4.7 Implicit Invocation Roots

In Section 3.4 we enumerated key design choices on how to add an implicit

invocation subsystem to a conventional language. Our work can be seen as a

more incisive way of achieving this goal.

We now expose the design decisions for our language following the

classification used in Section 3.4.

Event Definition: In our language, all reactors are considered to be events,

leading to a kind of implicit event definition approach.

Event Structure: We follow the parameters by announcement approach,

where the content of events depends on the returned values of reactors,

which are passed to their listeners.

Event Binding: We use dynamic bindings, but, diverging from a traditional

register procedure for this purpose, we provide a rich set of binding

primitives like LINK, AWAIT, and promises.

Event Announcement: In our language, as each reactor is an event, their

simply termination implicitly announces events.

Delivery Policy: We use full delivery of events.

Concurrency of Handlers: We provide a safe deterministic execution for

concurrent reactors, allowing the exploration of parallelism.

In the Introduction, we pointed as our main criticisms to implicit

invocation mechanisms (i.e. event-driven programming) the excess of verbosity,

and lack of local state due to inversion of control.

We consider that implicit event declaration, along with implicit event

announcement are fundamental features to decrease the verbosity of event-

driven programming.

Also, promises and AWAIT calls give support to event bindings in the

middle of reactors, allowing sequential execution and local state to become a

reality for programming reactive systems.
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The LuaGravity Implementation

LuaGravity is a set of runtime extensions to the Lua language supporting

our proposed abstract language. In addition to implementing the reactive core,

LuaGravity also provides higher level primitives built on top of our foundation

language, easing the development of reactive applications.

Probably the two most important concepts of our proposed language

to be mapped to Lua are reactors and behaviors, as they appear in virtually

every reactive application. Not surprisingly, in LuaGravity, we map reactors

and behaviors to the basic concepts of functions and variables of Lua.

Lua [Ierusalimschy06, Ierusalimschy-LuaManual] is a lightweight, exten-

sible, imperative and functional scripting language. For our proof-of-concept

implementation, the imperative style, along with the facilities for extending

the language, are of special interest. All LuaGravity’s extensions to Lua are

added during runtime, with semantic modifications to the language, avoiding

the need for a parsing phase.

5.1 Reactors

We cannot easily modify the Lua syntax to include a reactor reserved

keyword. Lua’s extensibility is limited to the semantics of existing concepts,

not allowing syntactic modifications to the language. For instance, it is possible

to redefine the meaning for x=1, but not the assignment token, such as in x:=1.

Hence, we take advantage of conventional Lua function declarations to

create reactors. For instance, instead of creating a function, the following code

should create a reactor:

function myReactor (p1, p2, ...)

...

end

In Lua, a function declaration is actually syntactic sugar for an assign-

ment. The following code is equivalent to the previous one:
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myReactor = function (p1, p2, ...)

...

end

That is, the variable myReactor is assigned a function created in runtime

with an anonymous function constructor.

Moreover, global variables, such as myReactor, reside in a predefined

table G. The following code is equivalent to the previous one:

_G.myReactor = function (p1, p2, ...)

...

end

In order to create reactors from function definitions, we need to modify

the semantics for new index operations in the global table to call the following

function instead:

-- Call this function instead of performing ‘t.k = v‘

-- (_G.myReactor=func, above)

function (t, k, v)

if type(v) == ’function’ then

rawset(t, k, reactor_create(v))

else

rawset(t, k, v) -- ‘rawset‘ bypasses semantic extensions

end

end

The function reactor create receives the original Lua function and

creates a wrapper around it with additional information:

function reactor_create (f)

return {

body = f,

state = ’ready’,

edges = {},

...

}

end

Every reactor is represented by a Lua table, holding its body of com-

mands, current state, outgoing edges, and several other information omitted

here for the sake of brevity.
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5.2 Organisms

Organisms are the LuaGravity’s counterparts to objects of object-

oriented languages. Like objects, organisms are categorized in classes, and are

used to encapsulate data and operations into a single abstraction. We do not

provide a strict definition for organisms; instead, we currently see organisms as

a natural abstraction for reactive applications. The main differences to objects

are

– Organisms expose reactive variables, instead of properties (or getters &

setters).

– Organisms expose reactors, instead of methods.

As the name suggests, reactive variables keep mutual dependencies

automatically. They are a specialization of behaviors1, and are presented in

Section 5.3. For now, it is enough to say that reactive variables are used

transparently with the Lua syntax for variables. In the following code, a and

b are reactive variables:

org.a = 0

org.b = org.a + 1

org.a = 1

print(org.b()) --> 2

As is expected for behaviors, the value of org.b is recalculated when

org.a changes. We use the syntax org.b() to access the current value of

org.b.

To fall back to standard fields and methods in LuaGravity, we use

identifiers prefixed by underscores (as in org. var=1).

Each class of organisms is defined in a separate file. The following example

creates an abstract class to represent ”visible” objects we want to draw on

screen:

org.class ’Visible’

function _new (self)

self.x = nil

self.y = nil

self.dx = nil

self.dy = nil

1Behaviors in the sense of reactive languages, not of OO.
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self.visible = false

self.isVisible = AND(self.visible,

AND(self.x,

AND(self.y,

AND(self.dx,

self.dy))))

end

function _draw (self)

-- abstract method

error ’Abstract Method’

end

Every class method or reactor receives self as its first parameter,

representing the organism being manipulated.

In the example, the constructor new creates instance reactive variables

for Visible organisms: x, y, dx, and dy for their bounds, a boolean visible

to turn on/off their exhibition, and a boolean isVisible to indicate whether

the organism is currently visible on screen. AND is the lifted version of Lua’s

and operator (whose semantics cannot be redefined). In typical object-oriented

languages, such behaviors would need to be written with accessor methods

in order to keep dependencies between them. The draw method is used by

the graphical subsystem, and each concrete class (Image, Text, etc) must

implement it.

The following example instantiates two Visible organisms:

v1 = Visible { -- Equivalent to:

x=10, dx=20, -- v1 = Visible()

y=10, dy=20, -- v1.x=10 ; v1.dx=20; ...

}

v2 = Visible {

x=v1.x, dx=v1.dx,

y=v1.y+v1.dy, dy=v1.dy,

}

Note how v2’s bounds are defined in terms of v1’s. This way, whenever

v1 moves or resizes, v2 follows it.
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5.3 Behaviors

We consider that a straightforward syntax for behaviors is essential

for any reactive language. In LuaGravity, behaviors appear in three flavors:

reactive variables (known as cells in FrTime [Cooper04]), lifted expressions,

and integrals & derivatives.

Reactive Variables

Reactive variables are used transparently as normal Lua variables, but

have their values updated whenever a dependency changes. In the last section,

we showed the use of reactive variables in organisms.

To implement reactive variables in LuaGravity, we take a similar ap-

proach to that of reactors: we intercept variable assignments, creating reactive

variables instead. As myVar=x is equivalent to G.myVar=x, we modify the se-

mantics of G’s new index operation again, now to support reactive variables

as well.

Note that the same semantic changes on G are applied to organisms.

For LuaGravity, G is actually a kind of global organism. Also, as commented

previously, we still allow applications to use conventional Lua variables and

functions by prefixing identifiers with underscores.

Lifted Expressions

Expressions involving behaviors are lifted to produce new behaviors.

Arithmetic expressions, whose operators Lua allows to redefine, are used

transparently in LuaGravity. Other operators have associated lifted functions,

requiring Lua programs to be rewritten to behave reactively. We also provide

the primitive L, which returns a lifted version of a given function.

Follows an example of an expression written in Lua, converted to behave

reactively in LuaGravity:

-- Non-reactive Lua expression

var = tonumber(a) or b*b

-- Reactive LuaGravity expression

var = OR( L(tonumber)(a), b*b )
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Integrals and Derivatives

LuaGravity supports the primitives S and D for creating integrals and

derivatives behaviors, respectively [Cooper04]. The example below exemplifies

their use:

s = s0 + S(v) -- ‘s‘ is incremented with speed ‘v‘

a = D(v) -- ‘a‘ holds the variation of speed

(a) Behaviors as Organisms

Behaviors are themselves implemented as organisms. The following code

shows the implementation of reactive variables as instances of the VarBehavior

class of organisms, keeping our intent of building behaviors on top of existing

mechanisms, and not relying on internal tweaks.

The reactive variable constructor initializes its current value ( value),

the data source ( src) it depends on, and a function to break the dependency

with its source ( brk):

org.class ’VarBehavior’

function _new (self, v)

self._value = v

self._src = nil

self._brk = nil

end

The reactor set, which is never called directly by an application program-

mer, is used on dependency links between behaviors created on assignments

(see further):

function set (self, value)

if self._value == value then

return CANCEL

end

self._value = value

end

As an optimization, if the value being set is the same the variable

currently holds, the reactor is cancelled (not propagating dependent reactors).

We altered Lua’s semantics so that the assignment a=b links the variables’

set reactors:
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-- ‘a = b‘ is transformed into,

a._src = b

a._brk = LINK(b.set, a.set)

a.set(b._value)

The function to break the dependency link is kept to be called in case of

further assignments.

In our real implementation, VarBehavior is actually a subclass of

Behavior. We have also implemented lifts, integrals and derivatives as sub-

classes of Behavior in a similar way.

5.4 Examples

In this chapter we present two complete reactive applications written

with LuaGravity.2

(a) The Dining Philosophers

In this example, we propose a solution to the classical synchronization

problem of The Dining Philosophers [Dijkstra]. A common solution involves

mutual exclusion to lock access to shared forks. Besides deadlock, a solution

should avoid starvation and livelock, as well. Follows an overview of the

application:

-- create forks

local forks = {}

for i=1, 5 do

forks[i] = Fork()

end

-- create philosophers

local phils = {

Phil { left=fork[1], right=fork[2] },

Phil { left=fork[2], right=fork[3] },

Phil { left=fork[3], right=fork[4] },

Phil { left=fork[4], right=fork[5] },

Phil { left=fork[5], right=fork[1] },

}

2 We provide video demonstrations for these examples in the website
http://thesynchronousblog.wordpress.com/video-demonstrations/, along with
other sample LuaGravity applications.
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-- make them live

for _,phil in ipairs(phils) do

SPAWN(phil.run)

end

The code above just creates the forks and philosophers. The core of the

application resides in the reactor run of the philosopher class:

org.class ’Phil’

function run (self)

local left, right = self._left, self._right

while true

do

-- think for a random time

AWAIT(math.random(5))

-- wait for forks

while not (left:_isFree() and right:_isFree()) do

AWAIT(left.put, right.put) -- await one of them

end

left:_hold(self)

right:_hold(self)

-- eat for a random time

AWAIT(math.random(5))

-- back to think

left:put(self)

right:put(self)

end

end

The reactor run is a infinity loop where the philosopher thinks, waits for

the forks and eats. The think and eat steps are just an AWAIT on a random

time between 1 and 5 seconds.3

After thinking, the philosopher enters the inner while, checking whether

his forks are available for use, otherwise he waits for them until succeeding.

3LuaGravity accepts numbers as parameters to AWAIT in order to wait for the given
number in seconds.
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Just after leaving the inner while, the philosopher acquires his forks in order

to eat.

Given the zero-delay execution of reactors, all philosophers are allowed

to run at every instant. Hence, our reactive scheduler provides fairness among

philosophers.

Note that, in synchronous languages, there’s no need for mutexes or

other means of mutual exclusion. When the forks of a philosopher are free,

the execution of the whole inner while followed by calls to hold is atomic,

and no others philosophers have the chance to acquire forks in the meantime.

After acquiring the forks, the philosopher eats for a random time. Then,

he goes back to think, releasing his forks. The call to reactor put awakes

philosopher’s neighbors if they are in their inner while.

Recall that we used SPAWN(phil.run) to start the execution of philoso-

phers, but fork:put() to release a fork. A call to fork:put() is equivalent

to:

local promise = SPAWN(fork.put)

promise()

The difference is that, using Lua’s function call syntax, the running

reactor blocks until the spawned reactor terminates (following the expected

semantics for conventional function calls).

The definition for the Fork class is straightforward:

org.class ’Fork’

function _new (self)

self.__phil = nil

end

function _isFree (self)

return (self.__phil == nil)

end

function _hold (self, phil)

assert(self.__phil == nil)

self.__phil = phil

end

function put (self, phil)
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self.__phil = nil

end

Variables prefixed by two underscores, such as phil, are allowed non-

deterministic access. Indeed, non-determinism is inherent in this example, as

two philosophers may attempt to acquire forks at the same time. The lucky

one, after calling isFree and succeeding, calls hold and lock the fork. The

other one calls isFree and fails. Hence, the variable phil is written by the

first philosopher and read by the second one, concurrently, characterizing a

non-deterministic access to the variable.

We defined put as the only reactor in the Fork class to highlight it as

the main synchronization mechanism in the application, accounting for the

reactivity between the philosophers.

(b) Slide Show

In this example, we create a simple slideshow application. We have a

series of images and correspondent captions we want to draw on screen for

five seconds each. We allow the user to navigate with left and right keyboard

arrows, ignoring the five seconds timeout. Follows the list of images and

captions:

local list = {

{ file=’dscn0066.jpg’, desc=’Bana Jelacica Square - Zagreb’ },

{ file=’dscn0072.jpg’, desc=’Ljubljanica River - Ljubljana’ },

{ file=’dscn0079.jpg’, desc=’Ljubljana Castle - Ljubljana’ },

{ file=’dscn0108.jpg’, desc=’Heroe\’s Square - Budapest’ },

{ file=’dscn0124.jpg’, desc=’Chain Bridge - Budapest’ },

{ file=’dscn0143.jpg’, desc=’Bratislava Castle - Bratislava’ },

{ file=’dscn0168.jpg’, desc=’Dev~An Castle - Bratislava’ },

{ file=’dscn0191.jpg’, desc=’Dancing House - Praha’ },

{ file=’dscn0203.jpg’, desc=’Charles Bridge - Praha’ },

{ file=’dscn0434.jpg’, desc=’Brandenburg Gate - Berlin’ },

}

Next, we add a black background to the screen:

screen:add(

Rect {

_fill = {r=0,g=0,b=0},

x=0, dx=screen.dx,
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y=0, dy=screen.dy,

})

The screen organism interfaces with the computer screen, constantly

redrawing a list of Visible organisms (as introduced in Section 5.2) built

with screen.add.

The variable I holds the current slide to be shown. The function go is

called to change the current slide, incrementing or decrementing the value of

I depending on a parameter:

local I = 1 -- starts at first slide

local go = function (i)

I = I + i

if I > #list then -- cycles to the begin

I = 1

elseif I < 1 then -- cycles to the end

I = #list

end

end

To navigate in the slideshow, we need to create links from key presses to

the function go. We also create the timeout reactor, to be used further.

LINK(keys.RIGHT.press, function() go( 1) end)

LINK(keys.LEFT.press, function() go(-1) end)

function timeout ()

AWAIT(5)

go(1)

end

In the slideshow while body, we add to the screen the current image and

caption, based on the variable I. Then we start the timeout reactor and wait

for its termination or a left/right key press:

while true

do

local t = list[I]

local img = screen:add(

Image { t.file,

x=(screen.dx-500)/2, dx=500,

y=(screen.dy-380)/2, dy=380,
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})

local txt = screen:add(

Text {

face = ’vera.ttf’,

text = ’(’..I..’) ’..t.desc,

_color = {r=255,g=255,b=255},

x=img.x+10,

y=img.y+img.dy+10, dy=15,

})

SPAWN(timeout)

AWAIT(keys.RIGHT.press, keys.LEFT.press, timeout)

STOP(timeout)

screen:remove(img)

screen:remove(txt)

end

One of the AWAIT conditions updates the variable I to exhibit the next

slide. After the while body is awakened, the current image and text are removed

from the screen, and the next iteration is started, with I already pointing to

the next slide to be exhibited.

Note how the access to I is safe. Only the function go changes its value.

Furthermore, go can only be called as consequence of a timeout or a key press.

As such reactors do not depend on each other, they cannot be triggered during

the same propagation chain, and neither run concurrently.

5.5 Runtime System

On startup, the LuaGravity interpreter applies all modifications to Lua,

such as customizing the global environment to create reactors from function

definitions. It also initializes reactors representing the environment boundaries

(sensors and actuators), which are globally accessible. Then, the interpreter

creates and starts a reactor from the file passed as argument. In a typical

scenario, such reactor creates and relates other reactors, and then awaits a

terminating condition. Finally, the program enters in the main event loop,

running until the main reactor terminates.

We have implemented LuaGravity following the event-driven scheme for

synchronous systems of Figure 2.1. Follows an overview of the LuaGravity
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interpreter:

main = reactor_create(<filename>)

run(main) -- runs the main reactor

while main.state ~= ’ready’ do

local reactor, param = nextEvent()

run(reactor, param) -- runs an event reactor

end

The main reactor is created from the given filename and executed. The

event loop waits for events, which are internally translated to reactors, and

executes them. The function nextEvent must be customized for the system

where LuaGravity is embedded. In GUI systems, it will typically provide key

presses, mouse clicks, clock ticks, etc. as environment boundaries.

The core of our language is its reactive scheduler, which is responsible for

keeping the dependency between reactors, and execute them respecting some

rules.

The dependency graph changes on calls to LINK, AWAIT, or promises,

which add respective edge types to the graph. Each reactor keeps its own

list of outgoing edges so that, when terminating, they iterate over the list,

scheduling dependent reactors to execute.

Dependent reactors are not triggered on edge propagations, but only

scheduled. The scheduler is responsible for actually triggering them, preserving

their topological order and checking for inconsistencies. It is possible that a

reactor is scheduled (but not yet triggered) more than once during the same

reaction chain by different source reactors. That is exactly what avoids glitches

in LuaGravity. When actually triggering a reactor, the scheduler passes all

source reactors and parameters to it.

A complete run in the scheduler takes an infinitesimal amount of time,

and accounts for a full propagation chain, representing our notion of an instant:

function run (evtReactor, param)

trigger(evtReactor, param)

-- iterates over scheduled reactors,

-- respecting topological order

while hasNext() do

-- triggers next reactor,

-- passing all source reactors and parameters

trigger(getNext(), ...)

end

end
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The function run is called after an external stimulus happens (repre-

sented by evtReactor). While executing, such external reactor might sched-

ule other reactors, and so on. When there are no more reactors scheduled, the

function run returns.

Reactors bodies cannot execute as normal functions, as they may suspend

on calls to AWAIT or promises, before terminating. On suspension, we need to

capture and keep the current continuation of the running reactor in order to

resume it later at the same point. We use Lua coroutines [De Moura] for this

purpose.

To execute a reactor, the scheduler first identifies whether the reactor

must be started or resumed, depending on the edge triggering it. From link

edges or explicit spawns the scheduler starts the reactor; from promises or

await edges the scheduler awakes it.

If starting a reactor, we first create a coroutine for its body. Then, we

resume the coroutine (just created or being awakened), and check whether it

has terminated or been suspended. In case the reactor terminates, we schedule

its dependent reactors.

All detection of non-deterministic access to variables is done during

runtime. This way, LuaGravity needs to intercept every access to normal

variables (those prefixed by one underscore) in order to ensure deterministic

access.

When accessing a variable, LuaGravity first identifies the running reactor.

Then it checks whether the variable being accessed is in a list of variables

already accessed by concurrent reactors. If the access mode is incompatible

(for example, the reactor is reading a variable that was previously written), an

error is thrown. Otherwise the list of accessed variables in the running reactor

is updated with the variable being accessed.

We also need to identify which reactors are running concurrently and

which are not. A running reactor keeps the stack of reactors that resulted in

its own execution; all other running reactors are, hence, running in parallel

with it.

All runtime checks lead, of course, to a dramatic performance penalty,

which we are not concerned with at this moment. Even so, the performance is

acceptable for the examples we have implemented so far.
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Conclusion

In the Introduction, we described as the focus of this work the design

principles, at language level, for reactive applications. As primary require-

ments, the language should be driven by reactivity while allowing code to be

written sequentially.

In Chapter 2 we argued that asynchronous concurrency is not suitable for

writing reactive applications, which must be permanently synchronized with

the environment.

In Chapter 3 we presented two languages with opposite approaches for

reactivity. In one side, Esterel’s imperative style is more suitable for control-

intensive applications, supporting a parallel operator, a rich set of preemptive

constructs, and the await primitive. In the other side, FrTime follows the

dataflow approach, where control and dependency between data is managed

automatically.

In Chapter 4 we proposed a new reactive language that we believe to

fulfill the requirements raised in the Introduction.

The first requirement, reactivity, is achieved with implicit invocation

mechanisms for our processing units known as reactors. Reactors are connected

in dependency relationships so that a terminating reactor triggers the execution

of its dependent reactors. Besides providing reactivity, our approach strongly

decreases the verbosity found in event-driven programming, where events must

be explicitly declared and posted to provide reactivity. In our language, the

termination of reactors implicitly broadcast themselves as events. Another

simplification, compared to event-driven programming, is that events and their

handlers are reified as the single concept of reactors.

The second requirement, sequential execution, is achieved by allowing

reactors to suspend their own execution and wait for the termination of

other reactors. When a condition reactor terminates, the suspended reactor

is resumed with local references and point of execution restored.

In Section 5 we presented LuaGravity, a working implementation of our

abstract language. LuaGravity extends the Lua language with reactors and

behaviors as new primitives. It also introduces the concept of organisms, which
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can be considered the reactive counterparts of objects. We have developed

several fully working reactive applications with LuaGravity.1

We want to emphasize the innovative features of the proposed language:

Reactive programs as dependency graphs. An application can be

viewed as a graph, whose nodes are reactors, and edges represent

the dependency relationships among them. From an external stimulus,

a reactive scheduler traverses the graph, executing dependent reactors.

FrTime already uses a graph to represent dependency in expressions

containing behaviors. We extended this idea to represent dependency

between fragments of reactors (split at suspension points) in an applica-

tion.

Unification of dataflow and imperative reactivity. Our language fol-

lows the imperative paradigm, whose style resembles that of Esterel.

Furthermore, we do support dataflow on top the imperative primitives

of the language. For this purpose, we see the LINK primitive, absent in

Esterel, as an important feature in the language.

Determinism with shared memory. Determinism is a feature that most

synchronous languages claim to achieve. Concerning access to shared

variables, Esterel takes a conservative approach, as variables can only be

assigned in a single thread. FrTime either completely prevents the use of

shared variables in dataflow expressions or do not take determinism into

account with its benign impurities [Cooper04].

We have developed a consistent reasoning for safe and deterministic use

of shared variables. With the discrete notion of time of synchronous lan-

guages, we can detect simultaneous access to shared variables in a con-

sistent way. Still, when non-determinism is inherent to the application,

we provide means to explicitly allow non-deterministic access to specific

variables.

As future work, an important direction is going towards a more static

model for the language. In Section 4.2, we showed how the SPAWN primitive

circumvents the dependency graph structure. Only with static analysis reactors

could be split in several nodes based on AWAIT, SPAWN, and promises calls. This

would allow the scheduling policy to be unified, relying only on graph edges to

trigger reactors, and making the semantics of the language more consistent.

1 We provide source code and video demonstrations for these applications in the website
http://thesynchronousblog.wordpress.com/video-demonstrations/.
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With the need of an additional parsing phase, a derived implementation

possibility is to identify access to shared variables at compile time, creating a

map of nodes that cannot run concurrently. Then, during runtime, a simple

consult to this map would detect non-deterministic access to variables in

concurrent reactors.

We are also not satisfied with the current approach for preventing tight

cycles. The PAUSE primitive, which is also the solution adopted in other

synchronous languages, seems an overkill feature, susceptible to misuses by

application programmers.

Another possibility for future work is to allow concurrent reactors that do

not share variables to run with true parallelism. A challenge is how to control

updates to the dependency graph, which remains shared among reactors.
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